
University of Toronto
Faculty of Applied Science and Engineering

APS490 - Capstone
Final Report

Project # TRI 5 Date March 24th, 2024

Project Title Actuator Modelling for Simulation of Energy-Efficient Human-Robot
Walking

Client Professor Brokoslaw Laschowski

Supervisor Professor Hugh Liu

Team Lead Ugo Jalleau

Client Contact Person Stephen Yang, Amreen Imrit

Project Manager Yvonne Yang

Research Lead Koby Lee

Prepared By
(Names and Student #s of
Team Members)

Stephen Yang (1005917643)
Yvonne Yang (1006084381)
Koby Lee (1005831209)
Ugo Jalleau (1006209345)
Amreen Imrit (1005902971)

Table of Contents

Executive Summary.. 3

1.0 Introduction...3

1.1 Problem Statement..3

1.2 Existing Work and Contributions... 3

1.3 System Diagram..5

2.0 Benchtop...8

2.1 Experiment Setup..8

2.1.1 Data setup for experiment...10

2.2 Mechanical System...10

2.2.1 Sheared Gear...11

2.2.2 Housing Stripping... 12

2.2.3 Snapped Motor Coils...13

2.2.3.1 Failure Investigation..14

2.2.3.2 Evidence for Planet Carrier Displacement.. 14

2.2.3.3 Potential Explanation for Failure...15

2.2.3.4 Concerning Areas of Failure... 16

2.3 Electrical System..17

2.3.1 Torn JST on Power Distribution Board...19

2.3.2 Issues with Pi3Hat...20

2.3.3 Decoupling Motors and Controllers..21

2.4 Software..22

2.4.1 Architecture...22

2.4.2 Data Collection C++ Code..23

2.4.2.1 Existing Codebase and Coding Challenges...24

2.4.2.2 Code Reorganization and Refactor..24

2.4.2.3 New Feature/Innovations...25

New Feature: Torque/Velocity Controller...25

New Feature: Arbitrator..26

Innovation: Improved Logger...27

2.4.3 Post-processing scripts..28

2.4.5 Troubleshooting guideline and common issues.. 31

3.0 Simulation..33

3.1 Simulation Equations..33

3.2 Simulation Layout.. 34

3.2.1 Function - First Iteration... 35

3.2.2 Benchtop Replication - 2nd Iteration..35

3.2.3 Biomechanics Data - Final Iteration... 36

3.2.4 Calculating Efficiency...36

3.3 Simulation Results..37

3.3.1 Function...37

1

3.3.2 Benchtop Replication..39

3.3.3 Biomechanics Data..40

4.0 Future Work.. 43

4.1 Mathematical Modelling..43

4.2 Mechanical system...44

4.3 Electrical System..44

4.4 Software System...44

5.0 Conclusion..45

6.0 References..45

7.0 Appendix..47

2

Executive Summary
This project focuses on advancing robotic prostheses by characterizing the energy efficiency of
energy-regenerative brushless DC motors. It leverages a multi-disciplinary engineering approach, using
both experimental data with a dynamometer setup and mathematical modeling for theoretical prediction.
The hope is for the results to inform future controller designs to extend battery life and improve device
usability.

Throughout the design process, the team faced many mechanical, electrical, and software challenges with
the dynamometer setup. Mechanical challenges, such as gear shearing and motor coil damage, were
carefully addressed through material enhancements and redesigned components, ensuring durability in
operation. Additionally, electrical issues, including torn connectors and voltage irregularities, prompted
the implementation of temporary fixes and ongoing monitoring protocols to maintain system integrity. The
software architecture involves a C++ codebase for automating the testing sequence and Python scripts for
post-processing and real-time GUI display, facilitating data analysis and visualization. The code was
reorganized and refactored for improved performance, readability, and maintainability. Most importantly,
the C++ code automates a testing procedure that goes through various operating points for generating the
energy efficiency graph, and the functionality to interface with two controllers in different control modes
was developed. Efficiency calculations are based on real-time data obtained during the "hold" stages of
each test case. A specific process is followed to obtain relevant data points, and efficiency is calculated
based on equations from relevant literature. The project aims to integrate real-time data from the
dynamometer into the graphical user interface (GUI) for more realistic dynamic graphical output during
presentations.

The mathematical modeling framework offers a versatile approach to assessing actuator efficiency across
diverse input types, accommodating both discrete and continuous data alongside time-dependent or
independent variables. Through consistent principles governing DC motor model, efficiency calculations
and strategic mitigation of discontinuities and outliers, the simulation delivers insights into actuator
performance and energy regeneration potential. Comparative analyses to [1] underscore its utility in
predicting outcomes and informing design decisions, yet ongoing refinement and validation remain
imperative to fortify model accuracy for future applications and research endeavors.

Looking ahead, future work will focus on completing mathematical modeling for controller design,
implementing mechanical and electrical enhancements, and refining software systems to improve tracking
accuracy and stability. Challenges in the software system, such as torque controller issues and GUI script
alignment, necessitate further attention and iterative refinement. Unit testing for controllers and parameter
refinement are recommended for system robustness and reliability, ensuring seamless integration into
real-world applications.

3

1.0 Introduction

1.1 Problem Statement

In robotics, the task of increasing operation time in spite of limited battery capacity is a relentless and
persistent challenge. Research in power and actuator systems shows that bidirectional actuators (i.e.
brushless DC motors) may be back-driven to recharge an electromechanical system. As people move, their
joints are subject to negative work from the environment, such as when descending stairs or stopping after
a jog. In wearable robotics, this mechanical energy can be transformed into electrical energy back into the
system [1]. This is analogous to regenerative braking in cars, where kinetic energy is harnessed during
braking, converted into electrical energy, and stored in the vehicle’s battery for later use. The main
challenge in energy regeneration is the development and tuning of a control system that identifies the
operating energy state and sends out the appropriate commands; said system requires an accurate
mathematical model that can predict the behavior of the exoskeleton over and past its range of operation.
The scope of this project is to characterize the energy regeneration capabilities of a single actuator used in
the exoskeleton, with the ultimate goal of creating a predictive model of the actuator’s energy efficiency in
all quadrants of operation (motoring and braking); details about these operation states are presented in
Section 1.2. The method involves combining efficiency data from a dynamometer testing setup with
results from a physics-based simulation. This study focuses on the open-source 3D printed actuators
designed in [2]. Appendix A provides a visual for the chronological problem definition.

1.2 Existing Work and Contributions

To choose the various parameters of a testing rig, it is crucial to understand the actuator’s torque-speed
relationship. As seen in Figure 1, the actuator operates in four distinct quadrants: forward motoring,
forward braking, reverse motoring, and reverse braking. Provided the motor drive allows bi-directional
power flow, energy can flow from the motor to the load (quadrants I and III), or from the load to the motor
(quadrants II and IV) [3]. During motoring operation, the efficiency is measured as the ratio between the
mechanical power output and electrical power input –vice versa during braking. There are various ways to
model these efficiencies depending on the motor-and-gearbox setup and the underlying power dynamics
[3, 4]. In human gait, there are many periods of negative work (braking) with potential for energy
regeneration; characterizing the actuator for power efficiency in these periods is crucial to understanding
how much energy can flow back to the battery.

4

Figure 1: Operating Quadrants of an Actuator

Urs [2] presents open-source designs for two quasi-direct-drive actuators suitable for robots weighing
8–15 kg. These actuators are constructed using off-the-shelf and 3D-printed components, costing less than
$200 each. The paper details the mechanical, electrical, and thermal properties of the actuators,
demonstrating their durability with only a 2% efficiency reduction and 26 milliradians backlash growth
after 420k strides. The performance of these actuators is comparable to traditional machined actuators,
making them a cost-effective and customizable solution for high-speed legged robots. The Urs design has
only been evaluated by himself and his lab, and has yet to be used in other designs. Additionally, there are
disparities between the torque and speed achievable by the actuator and those typical of human operation.
Thus the team endeavored to both test the usability of this 3D printed actuator design, as well as develop a
simulation model to assess its performance when applied to the human gait cycle.

Laschowski [1] explores the potential of backdriveable actuators with energy regeneration to enhance the
efficiency and extend the battery life of robotic lower-limb exoskeletons. By generating electrical energy
from converted mechanical energy gained during the phases of negative work in the walking cycle, the
study simulates energy regeneration across various walking speeds and slopes. The findings suggest that
energy regeneration at slower walking speeds on declines could significantly increase the operating time
of exoskeletons; it can improve locomotor efficiency by up to 99% in terms of the total number of steps.
The research extends beyond previous studies that focused only on level-ground walking, offering insights
into daily locomotor activities and real-world mobility. One of the limitations of the study was that the
motor could not regenerate energy. Thus, the efficiency in the forward direction of motion was assumed to
be the same as in the backwards direction. The model proposed by the team plans to test this assumption.

Verstraten [4] examines the energy efficiency of geared DC motors in dynamic applications, comparing
theoretical models with experimental data. The paper highlights the inconsistencies in how energy
consumption is calculated and the often neglected speed/ load dependent losses. It presents a case study of
an 80W geared DC motor applying a sinusoidal trajectory to a pendulum, formulating general
recommendations for modeling energy losses. The findings demonstrate that commonly used models can

5

predict energy consumption with less than 10% error when compared to experimental measurements,
emphasizing the importance of accurate actuator models for optimizing power consumption. The
equations used by Verstraten are generalized for any motor so the goal was thus to apply these
fundamental equations to the Urs actuator. The main goal was to recreate Verstraten’s heat efficiency map
with the motor torque and speed values from Urs’s actuator in order to understand how applicable the
actuator design would be for human walking conditions.

1.3 System Diagram

This section highlights the various aspects of the work done by the team, and will reference the flowchart
in Figure 2. As mentioned, the goal of this project is to develop a predictive model of the actuator’s energy
efficiency across all quadrants of operation. Since the focus is on regenerating energy during human gait,
the inputs of the model are torque and speed while the outputs are efficiency maps of said torque and
speed. In addition, the efficiency values are plotted against the stride time to highlight periods of negative
work, where energy is available for regeneration. The modeling process was divided into two main
sections: the physical model and the virtual simulation. The physical model refers to the benchtop
dynamometer setup, which is a testing device with two actuators connected to each other through a torque
sensor to measure torque-speed profiles; the details of the electromechanical system are highlighted in
Section 2.2 and 2.3. The other part of the project focuses on simulating the theoretical physical behavior of
the actuator, and was derived mathematically using a pendulum set-up. Details about the system and
model are outlined in Section 3.

6

Figure 2: Actuator Testing and Modeling Workflow

7

To better understand the implications of the benchtop mechanism and the simulation, it is important to
understand the system inputs and desired outputs. In [1], joint powers were derived from open-source
biomechanics data using rigid-body inverse dynamics; these values were then integrated over time to yield
profiles of mechanical energy absorption and dissipation during human locomotion. This dataset provides
torque-speed pairs that represent discrete knee states during gait. These operating points can be fed to the
benchtop mechanism to yield an efficiency map of the actuator (electrical power is measured at the motor
terminals). On the other hand, the human gait can be represented as a continuous function of knee angle or
speed. The simulation allows for mechanical power to be derived from first principles using ordinary
differential equations, while the electrical power is calculated from a simple DC motor model. Here, the
efficiency profile is outputted as a heat map and a time-based function. Through system identification, an
accurate mathematical model can be derived by combining the simulation results to the dynamometer data.
This project’s next steps are further discussed in Section 4.0.

The components of the benchtop dynamometer are highlighted under “Physical Model” in Figure 2. The
experimental setup uses two actuators connected at the shaft through a torque sensor, which logs values for
velocity and torque. The motor controllers and power meters provide velocity and current values for the
driven and driving motor. In this case, the driven motor acts as the load against the driving motor; the data
is collected from the driving motor, which simulates the knee joint. The driven motor is operated in
closed-loop velocity control while the driving motor is operated in open loop torque control. To collect
data, the following test procedure was developed: velocity of the driven motor is ramped up to the desired
value, torque of the driving motor is ramped up to the desired value, both are held for a set time (note, this
is referred to as a torque-speed operating point), then torque and velocity are ramped down in that order.
While conducting the experiments, the team encountered hardware issues, namely gear shredding, actuator
housing stripping, and motor coils snapping. In addition, the microcontrollers suffered damage that
significantly slowed down the software development and testing process.

The simulation was developed for use in conjunction with the benchtop dynamometer to create a realistic
model of the actuator. Once validated, the combined mathematical model can be used to extrapolate
efficiency values beyond the operating range of the motors. To achieve this, the actuator was modeled as a
motor-gearbox-shaft system subject to pendulum loading. This setup was chosen for its applicability to
knee joint dynamics, where the knee is isolated as a member with a torque applied at the extremity (foot);
the governing differential equations are highlighted in Figure 2 under “Simulation”. The simulation was
generalized to three types of inputs: actuator operating points, biomechanics data, and joint position
functions. Following the DC motor model, the efficiency was calculated through all four quadrants of
operation. Similar to [1], it can be seen that regeneration decreases with incline. However, compared to
[1], the total number of steps from the same battery capacity is significantly lower while the efficiency
values are much higher. Likely, differences in joint modeling (degree of freedom) and discrepancies in
data are responsible for the mismatch. Because of the many issues encountered with the benchtop, the
team was unable to perform system identification on the actuator to optimize the mathematical model.

8

2.0 Benchtop
The benchtop is a dynamometer setup, utilizing two motors and various sensors to enable testing of an
actuator. With one actuator (dynamo actuator, or driven actuator) acting as a variable load, and one
actuator (test actuator, or driving actuator) acting as a device under test, the benchtop allows isolated
testing of the driving actuator without concerning other components of the robotic prosthesis. The goal of
the benchtop testing is to map out the actuator efficiency over torque and velocity regimes in the 4
quadrants of motor operation.

Figure 3: Mechanical Design of Benchtop [6]

2.1 Experiment Setup

To obtain the necessary values to calculate the actuator efficiency over a range of velocity, the benchtop is
set up so that the driven actuator is operated in closed loop velocity control while the driving actuator is
operated in open loop torque control. The goal of the experiment is to measure the final torque reached by
the test, or driving, actuator. To extract an efficiency value for a given torque velocity operating point, the
instantaneous current and voltage must also be recorded for each actuator. Then, the efficiency for a given
torque-velocity operating point can be expressed as:

η =
�
���

�
��

=
τ θ̇

�� (1)

Where is the velocity of the shaft, is the torque reached by the driving actuator, is the driving actuatorθ̇ τ �

current, and is the driving actuator voltage. Figure 4 below [6] shows the test procedure to obtain the�

desired values from the actuators and sensors.

9

Figure 4: Flowchart of Testing Procedure [6]

The actuators are not operated under closed-loop torque control, as this would require constant
acceleration exceeding the preset velocity limit, which may damage the actuators. In this setup, the
velocity input represents an operating point (speed of human joint at a specific time in the human gait
cycle) while the torque represents an external reference signal (such as a torque supplied by an external
prosthetic motor). The driven actuator’s velocity is the independent variable while the final torque of the
driving actuator is the dependent variable. In this scenario, we do not expect the driving actuator to reach
the desired torque value since it is open loop controlled, and thus does not receive any feedback sensor to
adjust until the desired torque is reached.

10

2.1.1 Data setup for experiment

The torque limit of the actuator is ~10 Nm and the velocity limit is 10 rad/s (1.59 Hz) [2]. Beyond these
limits the actuator will be operating past its designed operating point and may experience failure faster
than expected. Using the efficiency map from [2], and taking into consideration the saturation of the
motor, the team decided on the following for the test point distribution. Since the benchtop records speed
as Hz instead of rad/s, the following rules assume velocity is in Hz.

1. The maximum velocity tested will be 1.59 Hz, with a spacing of 0.07 Hz between each velocity
point

2. The maximum torque tested will be 10 Nm, with a spacing of 0.33 Nm between each torque point
3. No torque-velocity point shall be above the line

(2)������ = − 12. 66 * �������� + 20. 128

4. The point 0,0 does not need to be tested, but points (0, torque) and (velocity, 0), where torque and
velocity is non-zero will be tested.

Following these rules, the torque-velocity points will be as presented in Figure 5. However, it should be
noted that the spacing of the velocity and torque can change depending on the precision and noisiness of
the data.

Figure 5: Velocity-Torque Test Points for Benchtop Testing

2.2 Mechanical System

The design for the actuators tested on the benchtop was sourced from Urs et al [2]. All custom components
in the design are manufactured using 3D printing. The majority of these parts are produced through
fused-deposition (FDM) printing, utilizing polylactic acid (PLA) plastic and printed on a Prusa MK3S+
printer. Despite FDM-PLA parts lacking mechanical strength compared to molded plastic or metals,
designs that minimize stress concentrations and optimize print orientation have demonstrated sufficient
strength for the intended application. To address concerns of elevated temperatures near the motor
exceeding the glass transition temperature of PLA, certain parts are manufactured via stereolithography
(SLA) using High Temp Resin with a Formlabs Form 2 printer.

11

The actuator is divided into two subassemblies. The Input Assembly includes the RI50 motor, a cooling
solution, and an open-source motor driver (moteus r4.5). All these components are mounted onto a
SLA-HT motor housing. The RI50 motor rotor is connected to the rotor-stator gear (RSG), which is
reinforced with a steel dowel pin and houses a magnet for interacting with an encoder. This component
bridges the input and transmission assembly. In the case of the 7.5:1 planetary transmission, the planet
carrier serves as the output. For the bilateral drive transmission, the secondary ring gear acts as the output.
All gears employ a 30-degree pressure angle involute profile to enhance strength. The main housings align
with each other using an annular boss and are joined axially with eight screws.

Although the mechanical system was already assembled, the team experienced some issues when working
with the actuators. The failure modes of these actuators and our corresponding solutions will be discussed
in the following sections.

2.2.1 Sheared Gear

On February 5th, while operating the actuator, an interference/grinding noise was heard and the actuator
stopped functioning properly. The team disassembled the Urs designed actuator and noticed that the
planetary gears had sheared, as shown in Figure 6 below.

Figure 6: Sheared Planetary Gears

After conducting a root cause analysis, the problem was separated into two factors: 1) insufficient strength
in the material choice of standard PLA filament, and 2) Insignificant infill percentage. To combat these
problems, we reprinted and replaced the planetary gears after retrieving the Computer Aided Design
(CAD) files from the client’s given dropbox. We then proceeded to print on the ONYX printer, which uses
material made up of micro carbon fiber filled nylon for 71 MPa of flexural strength compared to 50 MPa
of standard filament [5]. Additionally, we specified the infill to be increased from the default 10% to 40%
when reprinting the gears at the Myhal Fabrication Facility. The resultant gears can be seen in Figure 7
below.

12

Figure 7: Revised Planetary Gears

Although the gears were manufactured more robustly, this does not eliminate the possibility that they will
shear again. In order to decrease the likelihood of recurring shear, future teams working with this actuator
should spend more resources in the manufacturing process (i.e. use SLA, better slicing profiles, better
print parameters).

2.2.2 Housing Stripping

During reassembly of the actuator, we attempted to screw in the connecting bolts to the housing, but were
unable to securely fasten the housing due to screws being loose as a result of screw threads of the housing
holes stripping. Unsecure fastening of the actuator housing poses risks including component misalignment,
electrical hazards, mechanical failure, and operational inaccuracy. The team realized that the actuator was
designed for a one-time assembly with thread forming screws into the plastic housing; it was not designed
to be disassembled. We explored the option of utilizing heat set inserts as a removable assembly option to
the housing by testing the heat set inserts on another printed gearbox. The headset inserts could not be
properly inserted since the smallest available headset inserts were too large in diameter for mating holes.
Avenues to explore for future teams would be to enlarge the hole diameters to allow for removability of
the component parts. Unfortunately, the team did not have time to make this diametrical adjustment,
instead a new housing was printed (shown in blue filament) with thread forming fasteners, recognizing
that it is not a permanent solution. The assembled actuator is shown below in Figure 8.

Figure 8: Final Housing Assembly, Left - Front View, Right - Back View

13

To ensure all of the necessary components are available when reassembling the actuator, the team put
together a full Bill Of Materials (BOM) of the actuator to cross reference and place shipment orders of any
missing components necessary for assemblage. The BOM shown below in Figure 9 was based on the
given T-Blue BOM and actuator CAD given in the client’s dropbox.

Figure 9: Urs Actuator Bill of Materials

Not all of the components needed to be reordered, but this BOM served as a good checklist to know what
was missing and how much it would cost.

2.2.3 Snapped Motor Coils

On March 4th, during the course of the experiments, the driven actuator motor stator experienced damage
to the coils, ranging from significant surface wear to complete snaps on two of the coils. The cause of this
failure is theorized to be from friction between the stator coil and planet carrier (PC) caused by sliding of
the PC relative to the bearing, eventually leading to the wear and rupture of the copper wires.

14

2.2.3.1 Failure Investigation

While running the testing procedure with the two motors connected via the torque shaft, the driven motor
(motor 4) suddenly stopped responding to commands after a few successful velocity control runs, despite
the drive motor (motor 1) running in velocity/position/torque control without problems. The lack of
acoustic noise, along with the stationary condition of the output shaft, indicated that the actuator was not
running at all; if there had been a transmission issue, the team would have observed vibration (noise,
mechanical, heat, etc.). The dynamometer was taken apart and the problematic motor (motor 4) was run in
velocity/position control independently. Moteus debug UI showed consistent and correct readings from
motor 4 encoders when the motor was turned by hand. Because the voltage and temperature values were
standard, the electronics were assumed to be functional and the investigation was directed towards the
assembly of the actuator. To understand the root cause of failure, the team went back to [2] to understand
the intended function.

The actuator was taken apart to identify the source of failure, and it was found that the planet carrier was
making contact with the motor stator. In the diagram below, the component responsible is the left half of
the planet carrier input (picture E, grayish pink part labeled PC). According to the diagram, the
components stopping the left half of the PC from moving translationally towards the motor stator (MS) are
the tight fit with the outer ring of the RSG connecting bearing and the screws fastening the two halves of
the planet carrier. Section 2.2.3.3 explains the discrepancies between the intended design and assembly
process followed by the previous team, which ultimately led to the failure of the actuators.

Figure 10: Diagram of Actuator Assembly from “Design and Characterization of 3D Printed, Open-Source
Actuators for Legged Locomotion” [2]

2.2.3.2 Evidence for Planet Carrier Displacement

Upon disassembly, the left half of the PC was found to have translated towards the MS coils, as can be
seen in Figure 11. The right picture shows a groove around the shaft with residues of copper on the bottom
of the PC, indicating contact with the MS coils.

15

Figure 11: Left - Displacement of the Planet Carrier (PC) Relative to the RSG Connecting Bearing, Right -
Signs of Contact between PC and Motor Stator (MS) Coils, 2024-03-04

The damage to the coils can be observed in Figure 12, areas of significant wear are circled and wire
ruptures are boxed out. This damage was sufficient to cause complete failure, which was reflected by the
non-response to microcontroller inputs.

Figure 12: Wear and Failure of MS Coils, 2024-03-04

2.2.3.3 Potential Explanation for Failure

While taking the actuator apart, it was found that the two halves of the planet carrier were not fastened as
intended in Figure 10. Figure 13 shows the missing bolt and screw connections that allowed for contact
between the planet carrier and motor stator coils. The tight fit with the RSG connecting bearing was also
observed to be looser. The reason for their separation is likely motor vibration over time.

16

Figure 13: Left - Fastening Chambers that Keep Both Halves of the Planet Carrier Together. Right -
Missing Fasteners Upon Disassembly, 2024-03-04

The team tried to fasten the two parts while re-assembling the actuator, but it was found that the holes for
the screw and nut were not big enough. Likely, the CAD for the planet carriers was not modified to 3D
print with enough clearance for fasteners. It is assumed that, to save time, the previous team neglected
these fasteners and relied on the tight fit tolerance to hold the PC halves in place. Figure 14 shows the
tolerance mismatch.

Figure 14: Tolerance Mismatch between Bolt and 3D Printed Planet Carrier, 2024-03-04

To fix this issue, the team chose to use threaded inserts in the fastener holes. With the use of a soldering
iron, the inserts were heated to melt the plastic; once in place, they were held while the plastic hardened.
This temporary solution allowed for easy assembly and disassembly, while providing protection for the
motor stator from the PC. In the future, the actuator either needs to be redesigned or the assembly process
needs to be standardized and enforced.

2.2.3.4 Concerning Areas of Failure

Despite finding a temporary fix, the motor stator coils are still at risk of failure with the current design and
assembly process. While investigating reserve actuators, it was noticed that many of them had similar coil
damage, but not to the point of failure. A few of these actuators were assembled as intended; however, the
discrepancies in tight fit tolerances from 3D printing, coupled with the fatigue from usage and vibration,
allow the components to move relative to one another. Based on these findings, four modes of motor stator

17

failure were identified in Figure 15 and ranked by severity: I) the gear (P12 in Figure 15) press-fit rods get
loose and come in contact with the motor coils, II) the PC halves separate and the lower half rubs against
the motor coils, III) the PC fasteners come loose and hit the motor coils, and IV) the whole PC shifts down
and hits the motor coils. If the actuator is assembled properly, the only real concern for failure is II) as the
current design does not stop the rods from translating towards the motor stator when vibrating (it only
remains in place through a tight fit with the PC). As was seen in this section, mode II) can happen if the
PC halves are not fastened properly. Mode III) may happen over an extended period of time, or if the
actuator gearbox is subject to enough heat to melt the plastic; washers can be used to keep the fasteners in
place. Mode IV) is unlikely to happen: the gears would need to fail completely, and the bearing connecting
the PC to the output shaft would need to be extremely loose. To eliminate Mode IV), the entire actuator
gearbox would need to be manufactured from stronger materials (steel components), but it would come in
at a significant cost.

Figure 15: Intended Placement of PC Assembly and Various Modes of Failure

2.3 Electrical System

The electrical diagram of the Benchtop can be seen in Figure 16. The design has two main power sources,
which can be somewhat classified into isolated high voltage (HV), and low voltage sources.

The high voltage supply is supplied by two LiPo batteries, each with a nominal voltage of 22.2V (6S cell
Clientconfiguration). The discharge rate of each LiPo is 5C [6], giving a max amperage of 165A
continuous. In the provided documentation for the benchtop, it is mentioned that the batteries are only
charged to 75% capacity to “ensure sufficient headroom for regeneration” [6]. The two batteries are
connected in parallel, so the resulting bus voltage to the power distribution boards is equivalent to the

18

nominal voltage of each LiPo battery, but the current load on each battery is halved compared to using a
single battery. No cell balancing is employed during operation of the Benchtop mechanism. A power
distribution board (PDB), the mjbots power dist r4.3b, is used to distribute power to both motors in the
testing setup. This board provides pre-charging and breakout for power connections (via XT30 connectors)
to up to 6 motors. Both motors have identical electrical layouts, with the output power from the PDB being
fed through an inline power meter (INA260). The INA260 measures current and voltage drawn by the
controller board on each actuator, and transmits this data via I2C to the test computer. Finally, the motors
are controlled with mjbots Moteus r4.11 controllers, which is a complete package including drive
electronics (enabling both forward and backwards power delivery), magnetic shaft encoder, high
performance 32 bit microcontroller, and high speed CAN interface.

Figure 16: Electrical Diagram of the Benchtop [6]

On the low voltage side, a Raspberry Pi 3b+ (RPi) is used as a primary test computer. Mounted on the RPi
is a CAN-FD transceiver hat (mjbots Pi3 Hat r4.5), which enables CAN-FD communication with the
motor controllers, as well as regulated power input from the batteries. The power regulation from the
pi3hat is important for the Pi 3b+ to receive isolated power from the battery rather than a wall power
supply. One caution that the team took was to ensure the Pi only received one source of power (since it is
also possible to power the RPi with the 5V micro-usb as well as the Pi3 Hat). Torque and speed values are
captured by the torque sensor (TRS605), mounted on the shared motor shaft. Torque values from the
TRS605 are processed by a 24-bit DAQ (Digital Acquisition) unit into a digital value. Velocity values
from the TRS are fed into a 32-bit Quadrature counter. Both microchips (for torque and velocity) are
connected to a STM32 microprocessor via SPI. Ultimately, the torque and velocity data is transmitted to
the primary test computer (RPi) via an isolated UART interface.

19

Similar to the mechanical system, the electrical system was fully procured and assembled at the beginning
of this project. However, the system broke down at various components throughout the project, requiring
engineering effort to repair and improve. In the following sections, we describe all sources of failure
observed during the course of the project.

2.3.1 Torn JST on Power Distribution Board

On March 1st, the JST that connects to the global power switch on the Power Distribution Board (PDB)
was torn off halfway and two of the copper pads peeled off with it. None of the high voltage circuit
components were getting power because of this. The broken copper pads were kept and an attempt to
solder the JST back on was made, but it was difficult as the copper pads had fallen off the PCB trace. The
soldering job worked as a temporary solution, and we anticipated further failure.

Figure 17: Failed JST Component Highlighted in the Red Box, the Middle Two Pins have Copper Pads
Torn Off from the Board with the JST, and are Visibly Bent

On March 23rd, none of the power indicators on the PDB, Pi3Hat, RPi, controller bus or controllers would
turn on, indicating an issue with the PDB. Upon investigation, the solder points connecting the switch,
highlighted in Figure 17, had failed. Specifically, the third solder point from the left had lost all connection
to the PCB board. To fix this, the JST was first desoldered. The area underneath the JST connector,
highlighted in Figure 17, had failed entirely as the copper traces completely peeled off from the PCB,
preventing further repair. One possible solution was to scratch off the solder mask, exposing the wire
below, and soldering directly onto the wire in the PCB. However, this is quite risky and could damage the

20

PCB itself. Thus, connections were soldered using a new off-board JST connector to equal node
connection points on the PCB. Electrical tape was placed over the exposed wires. This is not a permanent
solution, and should result in complete replacement of the PDB in the future.

Figure 18: Left - After Desoldering, Right - After the Makeshift Solution

2.3.2 Issues with Pi3Hat

On March 10th, after a few successful runs of the dynamometer setup, the controllers suddenly could not
be detected on TView or in the console. The cause of the failure was a faulty CAN transceiver chip, which
was diagnosed by checking the termination resistance of the CAN channels on the chip. In three of the five
available CAN ports on the Pi3 Hat, the termination resistance for both CAN-H and CAN-L (the two
channels of the CAN bus communication protocol) was less than 10KOhms. This behavior is indicative of
a chip failure, and results in the inability to send messages via the transceiver. Moteus support suggested
resoldering the CAN transceivers, or ordering a new Pi3 Hat board. Both approaches were attempted.

21

Figure 19 a, b, c: Left - Soldering Transceivers with 2 Soldering Irons.

On March 20th, the Pi3Hat stopped receiving power, as indicated by the power LED on both the RPi and
the Pi3 Hat. At this point, it was safe to assume that either the cause of previous failures or prior soldering
attempts had damaged a crucial component of the board. A new board, the Pi3Hat r4.5b, was ordered. This
board also had the unintended benefit of housing a different CAN transceiver model, ones with 60V fault
protection, making them more resistant to the previous failures for these transceivers. The new board
worked with the rest of the electrical system with no problems.

2.3.3 Decoupling Motors and Controllers

As a preventative measure to future motor failures, improvements were made to enable motor replacement
in the case of failure.

Originally, each motor was soldered to a controller by wire, which made it hard to mix and match
controllers and motors. To decouple them, we cut the wires and soldered on HRC Tri-pole connectors for 2
motor-controller pairs (one on March 18th, one on March 20th). This solution was implemented to make
future troubleshooting more accessible and efficient.

22

Figure 20: Left - Before Adding Connectors, Center - After Adding Connectors (Bottom), Right - Closer
View of Connectors - Yellow Wire Goes to the Single Pin in the HRC Tri-Pole

2.4 Software

2.4.1 Architecture

The source code used in this project consists of a C++ codebase for automating the testing sequence, and
some Python scripts for post processing and real-time GUI display. On a high level, the C++ code takes as
input a configuration file which specifies motor parameters such as Pi3Hat port and controller mode, as
well as a comma-separated file, “test.txt”, where each row specifies one operating point on the efficiency
graph. The code then iterates through the rows of “test.txt”, going through the testing sequence for each
point – ramp up velocity, ramp up torque, hold, then ramp down. During this process, it generates 3 sets of
logs: 1) “logs.txt” - general logs for software states and debugging, 2) “motor_logs.csv” - CAN results
from Moteus controllers which yield different measurements of torque/velocity than the torque sensor, 3)
“sensor_logs.csv” - measurements from INA260 and torque sensor. The raw data from these logs feed into
two Python scripts, one for visualizing the torque and velocity as the tests are running, and one for
post-processing the sensor data and calculating its corresponding efficiency point on the efficiency graph.

23

Figure 21: Input/Output Diagram to Software Architecture

2.4.2 Data Collection C++ Code

The original testing code for the benchtop was partially ported from Python to C++ to improve execution
performance. In this project, we not only completed the code migration to yield a fully functioning
dual-motor testing system in C++, but also improved the performance, readability and robustness of the
code.

The C++ code inherited from previous projects works to control a single motor, log its response over the
CAN bus, and log the sensor data in a separate file. The Moteus library, which serves as the motor
interface, implements a PID position control over an inner FOC (Field-Oriented Control) controller,
providing position/torque/velocity control modes by setting , , of the PID controller and parameters�

�
�
�
�
�

of its position control commands. The Moteus library was used in conjunction with the Moteus hardware
suite, consisting of a Raspberry Pi, a Pi3Hat, a power distribution board, and motor controller boards.
Concurrently, sensor data originating from the Futek torque sensor and power meters connected to each
motor were recorded and sent to a custom logger. This logger class was responsible for writing any and all
values to recorded log files, stored on the computer hard drive, for further analysis.

On top of fixing various issues in the original code, we reorganized the architecture to be more readable
and maintainable, and extended its functionality to control two motors with proper synchronization
between threads and correct control commands. We also wrote post-processing scripts in Python to process
the raw data collected from motors and sensors, and generate efficiency graphs.

24

Figure 22: New Architecture Diagram Presented as UML, A->B Indicates A Depends on B

Our current source code is available at https://github.com/iatsl/Benchtop. Please contact the team for
access.

2.4.2.1 Existing Codebase and Coding Challenges

While the original codebase laid significant groundwork for motor control and sensor logging, significant
additions had to be made to enable energy efficiency testing. First, the controller class had to be updated to
support more than just position control. Next, using the updated controllers, a main program had to be
written to enable efficiency testing. Previously, the code supported moving the position controller to
various test points, but they could not be reached correctly nor held for a sufficient amount of time. Lastly,
the test command parser had to be rewritten to support velocity and torque commands as well as refactored
to use C++ constructs. We also noticed that the original program caused a jittering effect in the motor
because of a poorly written control position loop. Lastly, it had synchronization issues which resulted in a
zombie thread heating up the motor even after the program was killed.

2.4.2.2 Code Reorganization and Refactor

The overall architecture of the code was overhauled and reorganized for clarity. The original organization
was non-standard (eg. header files and implementation files in one folder) and inconsistent, making it
difficult to troubleshoot and test. The new organization is as shown in Figure 22. This architecture focuses

25

https://github.com/iatsl/Benchtop

on an OOP (Object Oriented Programming) design with better separation of duties along with an
introduction of a new single point of orchestration. Not only does this make development easier, since
specific controllers (such as velocity or torque controller) can inherit from a base controller class, but it
also makes the code significantly easier to read, since the arbitrator and controller classes abstract away
the underlying library features.

Various refactors to the source code itself were also made:
● Enums and structs were introduced for better organization.
● The Moteus and Pi3Hat libraries were updated to take advantage of a simpler controller interface.
● Functions were rewritten to be more idiomatic in C++ instead of pythonic. Examples include

removing unnecessary constructions and moves of std::map (likely translated verbatim from dicts
in Python code), and rewriting functions named “has_next” and “get_next”.

● Utilization of smart memory features like shared_ptrs and unique_ptrs to ensure code safety and
avoid segfaults

We also introduced googletest as a unit testing framework to validate individual components and build
robustness. As of now, four test files with ~22 test cases have been added. Functionality for generating
randomized test data was also added. This gives us confidence to collaborate as a team on a single
codebase while preventing accidental changes to working functionality. Documentation was improved all
around and detailed development notes were kept to record solutions to common issues.

2.4.2.3 New Feature/Innovations

The main new features and innovations concern the following components:
1. Added torque/velocity controller
2. New Arbitrator enabling control of 2 motors
3. Improved multithreaded logger

New Feature: Torque/Velocity Controller

Previously, the controller implemented in the codebase uses position control, and this resulted in motor
jitter as it was stepping rapidly through a sequence of positions, causing a jerky trajectory profile with
sudden acceleration and deceleration required at each test point. To create a smoother trajectory profile,
we looked into the Moteus library which provides implicit control modes through setting parameters to
special values such as 0 or NaN. Moteus implements a cascaded control with a position control PID
wrapped on top of an FOC controller. Since torque is directly proportional to current, implementing torque
control is equivalent to skipping the outer PID loop and directly adjusting current. For velocity control for
the driven motor, Moteus designates the special value NaN for a position command in position control
mode to implicitly specify velocity control.

Some problems were encountered in this process, such as initialization of servo parameter
max_position_slip required for velocity control. We read the documentation extensively and consulted any
example we could find online -- but similar velocity control use cases are scarce and hard to find on the
internet. In the end, we reached out to the original developers on the Moteus team directly, and the issue
was resolved through a method not mentioned in the documentation.

26

Many steps were taken to make our code more maintainable and easier to read for future developers. All
controllers are now derived from a base controller class using inheritance. In addition, the previously
implemented controller has been updated and kept as the default position controller. The program has been
refactored to control two motors instead of just one, and allows the control mode to be separately specified
for each motor in the config file.

Compared to previous implementations, this results in easier development when creating a new controller,
since certain underlying functions are already exposed by the base controller. Moreover, the base
controller specifies virtual functions for running and stopping which must be defined in the derived
controllers -- in simple terms, we can use the same functions for all controllers, with the only difference
inherent to the specific controller the function is called on. This allows for changing the controller easily
depending on the specific use case, as well as making the code much easier to read.

New Feature: Arbitrator

In order to properly conduct the experiment as described in Section 2.1, some coordination must exist
between the two motor controllers (driving and driven) to enable reaching each torque/velocity test point.
An arbitrator, which coordinates multiple components of a system, has been added for this purpose. The
arbitrator takes a list of test_cases, provided by the TestCaseParser class, and provides commands to both
controllers. Additionally, a finite state machine (FSM) is implemented to programmatically implement the
testing procedure states. The FSM is a simple method to encode states and state transitions, which is
needed to program the testing process as shown in Figure 4. The states of this FSM are shown in Table 1.
Additionally, transition conditions are defined as transitions between FSM states. In general, this FSM is
fairly simple, with all states proceeding to the next state upon transition conditions being met. However,
the STOPPED state is reachable from all states, and occurs when the TestCaseParser cannot provide any
more test points to Arbitrator, or an anomalous activity occurs (such as exceeding temperature or torque
limits).

Table 1: Arbitrator Finite State Machine states

State Description Transition Condition

STOPPED Motors are stopped. Also functions as an
e-stop state.

TEST_START Beginning test Controllers ready
New test_case exists

DRIVEN_RAMP_UP Ramp driven motor to target velocity Driven motor velocity
reaches target velocity

DRIVEN_HOLD_ASCEND Hold driven motor velocity for set time Wait X* seconds

DRIVING_RAMP_UP Ramp driving motor to target torque Driving motor torque
reaches target torque

27

TEST_POINT_HOLD Hold driving, driven motor at targets Wait Y** seconds

DRIVING_RAMP_DOWN Ramp driving motor to 0 torque Driving motor reaches 0
torque

DRIVEN_RAMP_DOWN Ramp driven motor to 0 velocity Driven motor reaches 0
velocity

TEST_POINT_DONE Test point complete, record completion and
perform calculations

New test_case exists ->
TEST_START

*Wait times are set to X=2s by default, but can be reduced in settings
**The duration of TEST_POINT_HOLD state is expected to vary based on test point values for torque
and velocity. As such, an exact function for Y (wait duration) is an open task which the team is working
on.

The arbitrator was initially designed to operate both controllers (and thus both motors) in parallel, by
multiplexing the command instructions such that the underlying motor controllers could operate
asynchronously. However, when testing, we realized that this approach did not work. To troubleshoot the
complex multithreading issues, we created a simple POC (proof-of-concept) program that focuses on
interfacing with Moteus directly, without the OOP architecture boilerplates, to better isolate the point of
failure. Through this investigation, we found that the root cause was that the underlying transport
mechanism, which relayed instructions from the Raspberry Pi3 to the Moteus controllers, was shared
between the two motor controllers. Thus, we decided on a sequential implementation instead, where the
two controllers are operated one after another, which is still sufficiently performant.

Innovation: Improved Logger

Previously, the logger instance utilized a polling scheme where the thread running the logger continuously
checked the message queues (mt_queue) for available messages. This has significant inefficiencies when
no messages are being produced, since the logger is still active and checking for messages. For example,
between test points, the logging frequency may decrease to avoid logging points that are not related to the
test. As such, the logger should yield computational resources to the other threads during this time.

Additionally, the previous logger only supported two very specific types of log messages, one message for
motor data and another for sensor data. Increasing the number of log files, or changing the number of log
streams, was impossible as these parameters were hard-coded. The improved logger supports a variable
number of logging channels, where each channel can be piped into a new file stored on disk. Each logging
channel is run in a thread, which sleeps when the message queue for that channel is empty. A pseudocode
implementation is shown in Table 2, which represents the logger improvement in concept.

Table 2: Logger Pseudocode

Old Logger New Multithreaded Logger

28

message_queues = {motor_queue, sensor_queue}
log_files = {motor_log_file, sensor_log_file}

while(true){
for(queue in message_queues){

if(queue has message and !closed){
logToFile();

}
}

}

message_queues = {queue_1, …, queue_N}
log_files = {log_file_1, …, log_file_N}

for(queue in message_queues){
run in thread(log_thread, log_file, queue);

}

def log_thread(log_file, queue){
while(queue has message and !closed){

logToFile();
}
wait until (queue has message);

}

The improved logger was able to achieve logging rates of over 8000 logs/sec when 1 logging channel was
tested, and over 7000 logs/sec when 2 logging channels were tested. A sample of these results is shown in
Figure 23.

Figure 23: Improved Logger Rate Testing Results

2.4.3 Post-processing scripts

There are two post processing scripts which process the data obtained during the testing procedure,
specifically during the “hold” stages of each test case. For the Graphical User Interface (GUI) both the
motor log and sensor log are used, while for calculating the efficiency map, only the sensor log is used.
Table 3 and 4 shows the columns of interest in the motor log and sensor log respectively and what they
represent. The motor log gets its information from the Moteus controller while the sensor log gets its
information from the torque sensor and power meter.

29

Table 3: Description of the motor log columns

Column Name Description Units

time Time elapsed seconds

drive_velocity Moteus controller velocity for driving actuator. The velocity
reported is that after the gearing system

Hz

drive_torque Moteus controller torque for driving actuator. The torque reported
is that after the gearing system

Nm

driven_velocity Moteus controller velocity for driven actuator. The velocity
reported is that after the gearing system

Hz

driven_torque Moteus controller torque for driven actuator. The torque reported
is that after the gearing system

Nm

Table 4: Description of the sensor log columns

Column Name Description Units

time Time elapsed seconds

pwrmtr_drive_voltage The voltage of the drive motor from the power meter sensor
(INA260)

Volts

pwrmtr_drive_current The current of the drive motor from the power meter sensor
(INA260)

Amps

pwrmtr_driven_voltage The voltage of the driven motor from the power meter sensor
(INA260)

Volts

pwrmtr_driven_current The current of the driven motor from the power meter sensor
(INA260)

Amps

sensor_torque The torque registered by the torque sensor at the output shaft Nm

sensor_counts Number of Rotations experienced by the shaft. This can be
converted to velocity by multiple by 2π/����

�������

revolutions

arbitrator Identifies which section of the test procedure the data point
was on

/

Below in Figure 24 is a GUI showing how the driving velocity and the driven torque behave throughout
the testing stages of velocity ramp up, torque ramp up, test point hold, torque ramp down, and velocity
ramp down for the duration of one test run.

30

Figure 24: Actuator Torque and Velocity Behavior with Respect to Time

This graph is based upon randomly generated data that are within set torque and velocity limits based on
the motor and sensor logs. On the day of the presentation, this GUI will take inputs from real-time data
being outputted by the dynamometer for a more realistic dynamic graphical output.

To calculate the efficiency for each test, a specific process must be followed. We first need to obtain all
data points where the arbitrator is at the “hold” state, and take the mean over that period. The sensor count
data is converted to rad/s by multiplying by . Once these are done, the efficiency can be2π/����

ℎ���

calculated. To calculate efficiency we need to determine which quadrant we are in. In the two quadrant
case (Quadrant I and IV), velocity is held positive while torque can be either positive or negative. In this
case, regeneration only occurs when the torque value registered is negative. Once the quadrant determined,
the efficiency can be calculated with the following equations:

load driven by motor, quadrant I (3)���������� =
�θ̇

��

motor driven by load, regen, quadrant IV (4)���������� =
��

�θ̇

For calculating efficiencies in Quadrant II and III, velocity is held negative, and the efficiency equations
are swapped relative to Quadrants I and IV.

2.4.5 Troubleshooting guideline and common issues

Troubleshooting generally means making a list of potential sources of failure and isolating parts of the
system to narrow down the root cause. Since the software system is built on top of electrical and
mechanical systems, all else is premised on the electrical and mechanical system working, which means

31

checking power indicator lights and motor functionality. The Moteus GUI Tview allows for visualization
of controller statistics and configurations and provides a console for directly sending controller commands
to the Pi3Hat. This makes it ideal for checking functionality of motors upon startup.

In general, the best way to resolve any Moteus related issues is with the Moteus discord. We first searched
the discord for keywords to see if it has been addressed before, then started a thread if we had more
specific questions.

List of common issues and their solutions:
1. if tview on startup does not dump configuration of motors, either the command is not run with the

proper parameters for --pi3hat-config (check which JC port is connected to which motor id), or the
motor id is incorrect; when tview starts up correctly, you should see a long list of configs being
dumped in the console, and in the top left panel you should be able to see a dropdown from the
motor id with various motor/servo statistics

2. if tview starts up correctly and motor does not spin on position control command (see below for
proper position control command), try moteus_tool calibration; also try turning the motor by hand
and observe in the left panel of dropdowns, *your motor id* > servo_stats > position changes
correctly (unit is in revolutions)

3. if tview starts up correctly and servo_stats > position does not change correctly when hand turning
the motor, it is an encoder issue

4. if tview starts up correctly and motor spins in velocity/torque control, but does not reach the
reference velocity/torque, the controller gains are not configured properly

5. if tview starts up correctly and motor spins slowly with low and loud droning sound
a. Check the gearbox ratio parameter `conf get motor_position.rotor_to_output_ratio` in

tview console
b. If it’s not 0.066849, update it with `conf set motor_position.rotor_to_output_ratio

0.066849`
c. Do `conf get motor_position.rotor_to_output_ratio` again to check that it is updated
d. *This is a known issue for motor 1 especially.

6. if using a new motor, need to first find or set the motor id with moteus_tool
a. Ensure that the motor is connected to JC1 on the pi3hat board, and no other motor is

connected to the board
b. Run ‘sudo python3 moteus.moteus_tool --info’. You should see a JSON dump with an id

at the start.
c. If you wish to change the id, run ‘sudo python -m moteus.moteus_tool -t 1 --console’
d. While the process is running, type ‘conf set id.id 2’ for an id of 2 for example. Ctrl-D to

exit,.
e. Run ‘sudo python -m moteus.moteus_tool -t 2’. You should see an ‘OK’ response from

the previous command.
f. While the process is running, type ‘conf write’. You should see an ‘OK’ response. Ctrl-D

to exit.
7. if ‘sudo python3 moteus.moteus_tool --info’ fails to dump any information or ends with error,

check that only one controller is connected to the Pi3Hat and on port JC1; if the connection is
correct,

32

8. if calibration with moteus_tool ends with error “RuntimeError(f”Controller reported fault:
(int(servo_stats.fault))”)”, check the battery voltage, it may be too high; you may set
servo.max_voltage in moteus_tool --console or tview

9. If calibration with moteus_tool ends with error “encoder not an integral multiple of phase,
0.4761716>0.1”, it is saying that the small encoder at the back of the moteus controller board
which interfaces with our motors from a hole on the casing is not placed appropriately – this is
most likely a mechanical assembly issue.

33

3.0 Simulation
The goal of the simulation is two fold. The first one is to obtain similar values as the benchtop to validate
the model. The second is to obtain actuator efficiency values at different movement points in the human
gait cycle, allowing us to evaluate energy regeneration with a quasi-direct drive motor.

The simulation code can be accessed at: https://github.com/AAImrit/verstraten_model.git

3.1 Simulation Equations

An actuator for a single joint can be represented as a motor connected to a gearbox, which is then
connected to a link with a mass (Figure 25). The simulation works by assuming that most of the output
variables are known, while the motor values are unknown and need to be calculated.

Figure 25: Actuator Broken down into gear and motor component

In [4], it was shown that the energetics of an actuator can be represented through a loaded pendulum with
five underlying equations (equation 5 to 9). This pendulum setup applies for the case of a bionic leg: the
knee is the joint of focus and the foot experiences the load. The equations are shown below:

(5)�
����

 = �
�
θ̈ + �θ̇ + ������(θ)

Where, is the torque at the output shaft, is the gearbox inertia, is gearbox damping constant, is�
����

�
�

� �

the mass of the joint and link, is the gravitational constant, is the link’s length, is the joint position,� � θ θ̇

is the joint velocity, is the joint acceleration. Equation 5 allows the mapping of joint position/velocity orθ̈

torque to a joint force. The remaining four equations can be used to solve for variables pertaining to the
motor.

(6)�
�

 = (�
�

 + �
�
)�θ̈ +

�

�
* �

����

(7)θ
�

˙ = �θ̇

Where, is the motor torque, is the motor inertia, is the gearbox ratio, and is a piecewise�
�

 �
�

� �

function which is 1/ when load driven by motor, and when motor is driven by load (regeneration);η
�

η
�

η
�

is the gearbox efficiency. Equation 6 allows us to calculate motor torque, while equation 7 allows us to
map the output shaft velocity (joint velocity) to the motor velocity, which is the velocity before the
gearbox stage. The remaining two equations are used to calculate current and voltage, and thus the
electrical power of the actuator.

(8)� =
�
�

+ �
�
θ
�

˙

�
�

34

https://github.com/AAImrit/verstraten_model.git

(9)� = �
��

��
 + �� + �

�
θ
�

˙

Where, is the current input of the motor, is the motor damping constant, is the motor torque� �
�

�
�

constant. For equation 9, is the motor voltage, is the motor inductance, is the motor resistance, is� � � �
�

the motor speed constant. Since we are using the same setup as [2], constants were taken from [2]
(Appendix B).

Using equations 6 to 9, actuator efficiency can be calculated. There are multiple cases to be aware based
on the motor quadrant of operation

load driven by motor (10)���������� =
�
����

θ̇

��

motor driven by load, regen (11)���������� =
��

�
����

θ̇

There is a third case which occurs at low torque or low speed and high torque when the motor is driven by
the load. In this case, the energy from the load is completely dissipated by the motor resistance, resulting
in zero efficiency [4, 2].

3.2 Simulation Layout

The simulation is set up to be able to calculate efficiency for both discrete or continuous data and time
dependent or time independent data. There are 3 different types of inputs we accounted for: functions of θ

or , discrete time independent values of and to emulate the benchtop and lastly, biomechanicsθ̇ �
����

θ̇

data which takes in and mechanical power. Figure 26 shows the data inputs, parameters for each of�
����

the inputs, and the general process of calculating actuator efficiency for each input type.

35

Figure 26: Simulation Layout and Process

3.2.1 Function - First Iteration

The team started by setting up the simulation for a symbolic/numerical function input to replicate and
compare our result with [4], ensuring our code is working as expected. The input can either be a function

of joint position () or joint speed (). If the input is , the derivative and second derivative is performedθ θ̇ θ

to obtain and . If the input is , the integral is calculated to obtain and the derivative is performed .θ̇ θ̈ θ̇ θ θ̈

These are then plugged into equation 5 to 10 to obtain the electrical and mechanical power. It should be
noted that in cases where numerical differentiation was required, the central difference was used, with
forward difference used for the first point, and backwards difference for the last point. The method for
calculating efficiency is further discussed in section 3.2.4

3.2.2 Benchtop Replication - 2nd Iteration

The benchtop replication mode aims to obtain similar values as the benchtop test procedure in order to
compare the two, validating the model with the benchtop data (ground truth). Similar to the benchtop

testing procedure, the input to the simulation is a velocity () and a torque test point (). Equation 6 toθ̇ �
����

9 is then used to calculate electrical and mechanical power. The first interaction (section 3.2.1) assumes
we have a time dependent input, in other words each data point is consecutive and depends on time.
However, when the benchtop is being tested, the test points and values obtained are time independent.

36

Thus, derivatives and integrals cannot be calculated. To account for this, two assumptions are made. First,

since in the benchtop tests the velocity is held constant, the first assumption is that equals 0. We alsoθ̈

assumed motor inductance () = 0. Typically, is very small and when multiplied by the derivative of� �

current, the terms in equation 9, it becomes much smaller than the other terms [4]; thus the is�
��

��
�
��

��

often ignored. It should be noted that the saturation limit (the point where the motor stall) is not accounted
for in our code.

3.2.3 Biomechanics Data - Final Iteration

The goal of using biomechanics data as an input is to obtain actuator efficiency values throughout the
human gait cycle, evaluating the extent of energy regeneration with a quasi-direct drive motor. The
biomechanics data was obtained from [7], who collected and processed human locomotion data of 10
different subjects at different walking and running speeds at different inclines. The data provided us with
joint power, joint torque and joint position of each subject during different locomotion states/trials. To
obtain efficiency for the biomechanics data we used the knee joint torque () and knee joint power (�

����

) from [7]. Since the knee joint power equals the joint torque multiplied by the joint velocity, to�
����

θ̇

obtain the joint velocity, we divided the joint power by the joint torque. Numerical differentiation was

performed to obtain . Equation 6 - 9 is then used to calculate electrical power.θ̈

It should be noted that the data provides about 60 human gait cycles for each trial of each subject. In order
to calculate the efficiency for one human gait cycle of a specific trial, we first obtained the average joint
torque and knee joint power of the 60 cycles available of a single subject. The calculations are then
performed with these averages. Moreover, the joint power is given as W/kg and the joint torque is given as
Nm/kg. We assumed the kg referred to the weight of the knee joint and link, and thus multiplied them by
the “m” constant. Though this is an assumption, through later observation we determine that keeping the
per kg would not affect overall efficiency values since this would result in all variables being per kg,
including electrical power. When taking the efficiency, the per kg would cancel out.

Originally, we used the the joint position and calculated the using numerical differentiation andθ̇, θ̈ �
����

using 5. However, Dr. Laschowki pointed out to us that this may not be accurate since this method does
not account for internal moments that are occurring in the human knee system when we are in movement.
When we tried validating the with the biomechanics data, this was indeed true and our was�

����
�
����

much smaller than that from [7]. Thus, we changed our method to that mentioned above, where we use the
joint power and joint torque from the biomechanics data.

3.2.4 Calculating Efficiency

For all of the three input types, the efficiency is calculated with the same method. As shown in equation 10
and 11, during regeneration (quadrant II and IV of motor operation) the numerator is electrical power
while the denominator is mechanical power, and the opposite is true for forward motor operation (quadrant

I and III). The code first identifies areas of regeneration, using and , in the step where using�
����

θ̇

37

equation 6 to calculate , changing the value of to match the motor quadrant of operation. These same�
�

�

areas are then used when calculating efficiency to decide whether mechanical power or electrical power
should be the numerator.

Since we are calculating instantaneous efficiency, areas where there is a switch between the regeneration
and forward operation, a discontinuity appears which results in the efficiency bigger than 1 seemingly
shooting negative infinity and sometimes infinity. To deal with this, we applied two things. Firstly we
capped the efficiency +/- 2, thus for any instance where efficacy is above the threshold, the efficiency is
set to +/- 2. We then applied a moving average to smooth out the curves, resulting in efficiency values less
than 1, which is the expected values. Since this occurs mainly for negative efficiency values, we expect
this to not cause much of an issue since negative efficiency already represents areas where the energy from
the load is completely dissipated by the motor resistance, representing zero efficiency [4, 2].

3.3 Simulation Results

Results obtained from the simulation are divided by the input type entered. The section below examines
some of the results and insights obtained from each input type.

3.3.1 Function

To ensure the code is working as expected and producing the correct results, the first input and actuator

constants were set to be the same as [4]. For these, we set ,θ = 2������(���(
θ

2
) * ������(�

�
�, ���(

θ

2
)))

which is similar to . Using this function as the input we obtained Figure 27 a) to c). Theseθ = ���(�)

results are similar to the [4] which indicates the code works as expected and has been implemented
correctly.

Figure 27 a) Output Shaft Values
b) Motor Values

38

c) Actuator Efficiency

Notice the jumps in motor torque, current and voltage values. These are discontinuity points which occur
when the motor quadrant of operation switches from forward operation to regeneration. These
discontinuity points are also seen in [4] and are thus not a cause of concern.

Additionally a step function input for the velocity was tried to see if we can reach a value similar for a
velocity-torque point in the [2] graph. This served as proof of concept that the code could potentially
replicate the benchtop efficiency map, which would be integral to validating the simulation results. As
seen in Figure 28, for a constant velocity input of 1 rad/s, an efficiency of about 0.55 can be reached,
which is similar to [2].

Figure 28 a) Motor Values for = Step Inputθ̇ b) Output Shaft Values

39

c) Actuator Efficiency

Notice that the efficiency in Figure 28 c) fluctuates in a sinusoidal manner. This is due to the ������(θ)

term in 5 which causes the , and thus all other variables, to follow the sinusoidal pattern. Considering�
����

this result, the team decided that for the benchtop replication portion (section 3.3.2) the inputs would need

to be a constant velocity () and a constant torque () to properly replicate benchtop results.θ̇ �
����

3.3.2 Benchtop Replication

As previously mentioned, from [2], we know the actuator’s maximum speed () is ~10 rad/s and theθ̇

actuator's maximum torque () is ~10 Nm. To calculate efficiency for every velocity-torque point, the�
����

torque and velocity input are first uniformly distributed, creating a velocity-torque grid. These andθ̇ �
����

serves as input to the simulation, with current and voltage being the output, which are used to calculate
efficiency and create the torque-velocity efficiency map (Figure 29 a)).

40

Figure 29 a) Simulation Efficiency Map b) Efficiency Map [2]

Comparing the simulation efficiency map to Urs’ [2] from his physical testing of the actuator, the results
look similar. The advantages of the simulation is that we can easily interpolate/calculate efficiency values
for any torque-velocity point, as well as make the efficiency map more granular by decreasing the spacing
between the uniform points. Additionally, with the simulation, the efficiency in all motor operation
quadrants can be calculated. It shows that quadrants I & III (forward operation) are symmetrical, and II &
IV (regeneration) are symmetrical, and thus it should not be an issue to only test quadrant I & IV during
physical modeling. However, there are some very noticeable differences, mainly the 0/-1 Nm torque line
and the saturation limit seen in Figure 29 b). This is due to the simulation not taking into account physical
real world limitations of an actuator, such as the saturation limit of a motor.

3.3.3 Biomechanics Data

Using the 10 subjects biomechanics for walking at different inclines and speed, the electrical power,
mechanical power and actuator efficiency through their gait cycle can be calculated. Figure 30 shows the
actuator efficiency, mechanical power, electrical power for subject 3 walking at a speed of 1 m/s on an
incline of 0o.

41

Figure 30 a) Actuator Efficiency During a Human
Gait Cycle

b) Mechanical and Electrical Power

c) Inputs to the Simulation d) Output Shaft Torque (Joint Torque) vs Motor
Torque

Using the electrical power, the battery capacity and the area where regeneration occurs, the amount of
steps that can be taken with the available battery capacity is calculated. Using a similar method as [1], the
total number of steps is calculated for both regeneration and without regeneration, to compare the 2 values
and obtain the %increase with regeneration active. The formula to calculate steps is found below:

�
�����

 =
������� ��������

������ �������� − ������ �����������
 ÷ 2

Any points of negative efficiency are considered as power consumption. Table 5 below shows the
percentage difference between different inclines for different subjects walking at 1 m/s.

Table 5: Percentage increase in total number of steps at different inclines for different subjects

42

Subjects
Percentage Increase (%)

-10o -5o 0o 5o 10o

1 260.86 589.14 59.74 154.79 16.94

2 172.54 53.21 28.71 29.69 20.94

3 0 85.63 46.57 26.58 17.58

4 108.19 0 76.80 0 0

5 0 85.91 0 0 0

6 22.91 44.30 52.50 42.71 47.35

7 208.60 103.44 40.79 29.71 62.92

8 230.56 75.91 97.90 478.9 271.61

9 295.65 0 22.41 16.32 174.75

10 165.90 66.14 49.94 63.38 21.29

Ignoring the Zero values and the outliers, such as subject’s 1 +589% at -5o incline or subject’s 8 +478.9%
at 50 incline, an average can be calculated, resulting in Table 6.

Table 6: Average of all subjects, with outliers and 0 removed, and compared to [1]

Incline -10o -5o 0o 5o 10o

Simulation
% Increase

205 73 52 34 30

[1]
% increase

74 41 14 6 4

Though our calculation for the percentage increase follows a similar pattern to [1], where the amount of
regeneration decreases with increasing inclines, our values are vastly different from [1]. Firstly, our
%increase is much higher, but this is due to our simulation only taking into account the knee joint, which
has the highest regeneration potential [1], while [1] considers all joints including the hip and the ankle.
Additionally, for the same battery capacity 967 680 J, our simulation got a much lower total number of
steps with our steps being an order of magnitude lower, in the 103 range while [1] was in the 104 range.
This could either be due to our model being more accurate and making less assumptions, or issues in our
code/data processing technique. To be certain, a more in depth investigation of the data and model is
required. Lastly, the percentage increase between each subject was vastly different, introducing large error
bars. We were unable to investigate whether this is due to some anomaly in the data or anomaly in the
code.

Though these results look promising, they should be read with reservations. There are many areas that
require refinement and validation. The main points to keep in mind while reading these are:

1. The Simulation model was not validated with ground truth data, the benchtop
2. Our motor and actuator constants are from [2], and was not obtained directly from our benchtop
3. We are assuming the actuator would follow the human gait cycle perfectly, but this is likely

impossible since it is both hard and not the most optimized way of using regeneration [8]

43

4. From Figure 30 a), we are observing negative efficiencies in the forward motoring quadrant,
which is unexpected and not observed in any of the benchtop simulation efficiency maps. This is
of high concern and would require us to look deeper into both the equations and the data.

44

4.0 Future Work
This section highlights next steps and parts of the project which future students should work on and
consider.

4.1 Mathematical Modelling

The ultimate goal of this area of research is to regenerate energy to optimize battery life in wearable
robotics. As mentioned previously, this project was cut short by the mechanical and electrical issues which
could not be solved in time with the resources available. Referencing Appendix A, the team got results for
the “Physical Modelling'' and “Testing” sections but was unable to dive into “Mathematical Modeling”.
The idea was to perform system identification on the dynamometer setup, a process in which data is used
to develop a model of a dynamic system. In Section 3.0, the team captured the essential underlying
dynamics, along with the relevant parameters of the actuator’s energy efficiency when loaded as a
pendulum. From there, actuator data from experimental procedures outlined in this report can be used to
complete the mathematical model. Once a model structure has been identified, the free parameters can be
optimized by minimizing a cost function. This process is generalized in Figure 31; it should be noted that
Matlab is a powerful tool to perform system identification. The purpose of this model is to predict the
actuator’s behavior outside of its operating range; currently, the 3D printed actuators are unable to reach
the higher torque-speed pairs from the biomechanics data. Outside the scope of this project, future work
should include the development of a similar model for more powerful actuators. From there, controllers
may be developed, validated, and implemented to regenerate energy and extend battery life.

Figure 31: System Identification Process and Example [9]

45

4.2 Mechanical system

There are a few actuator improvements and actions that can be taken to mitigate the likelihood of similar
mechanical problems occurring in the future. One of which being to utilize heat-set inserts for
removability of the 3D-printed components in order to stay true to the highly customizable aspect of the
design that Urs et al. had envisioned. Another being the utilization of a torque gauge when ensuring that
the housing is securely fastened. Once the proper minimum Nᐧm torque can be experimentally found, this
will limit the chances of having a housing improperly fastened before undergoing significant vibratory
motor rotational movement. Finally, future groups who need to make component modifications can make
sure to cross-reference the BOM that our group created to ensure that, for example, the motor coils will
not snap due to having planet carrier fasteners missing from the assembly.

4.3 Electrical System

As mentioned in Section 2.3, the Power Distribution Board should be replaced if the budget allows.
Currently, there is a makeshift solution in place that wires up the switch JST.

One important update that would improve the usability and longevity of the system is the inclusion of a
Battery Management System. Usually, these are installed at the terminals of a LiPo, and connected to the
balance port of the LiPo. These systems usually have numerous safety and preservation features, including
overcharge and under-charge protection, overcurrent protection, cell balancing, and more. In a real
powered prosthetic with regeneration, a BMS system would be invaluable as sudden switches between
charging and discharging can lead to high cell voltage imbalances, reducing the lifespan of the LiPo
battery. Another improvement that would reduce the likelihood of failures are to replace outdated
components to newer offerings. Of the benchtop components, only the motor controllers themselves are
the most updated models; the Pi3 Hat and PDB are both 2 versions old. Newer versions of these
aforementioned products have robustness and reliability improvements which can prove invaluable to the
smooth running of the Benchtop as a whole.

4.4 Software System

Some difficult issues arose here relating to interfacing with Moteus in a multithreaded program. In the
current state of the program, the sensors, the logger, and even the arbitrator FSM logic work as expected.
The main issue is that the torque controller does not track torque properly. For example, if motor 1 starts in
velocity control, and then motor 2 is commanded a torque of 1 while SetStop is called on motor 1, the
torque controller will maintain the same velocity as transmitted by motor 1 earlier. After the torque
controller is fixed, the condition for transitioning from torque ramp up to test point hold should be
reviewed. We have observed large fluctuations on Tview when running torque control in Figure 32, which
is why the steady state tolerance was set to quite high, but perhaps this is an issue that can be fixed as well.
Potential causes of this include imbalances in the mechanical component which causes the actuator to turn
unevenly.

Unit tests were written for most components except for the torque/velocity controllers and the arbitrator.
Using Moteus with GTest posed significant challenges. There are many magic numbers in the arbitrator
code, such as the steady state window, which should be finetuned by hand. Controller parameters such as
gains should also be scrutinized.

46

Although scripts for the GUI and efficiency graph generation are written and tested individually, they have
not been tested end-to-end with actual data from the motors collected by the C++ code. There may be
some minor misalignment issues between what the scripts expect and what the actual data looks like.

5.0 Conclusion
To summarize, despite encountering several challenges during the course of this project, the team has
demonstrated the ability to apply engineering principles effectively in navigating through various
iterations to improve our approach. Our initial aim was to address the problem of limited energy capacity
in wearable robotics by developing a control system for energy regeneration based on a predictive model.
However, the team faced setbacks in achieving tangible results due to unforeseen issues with the actuators,
particularly the sheared planetary gear, stripped housing threading, and the snapped motor coils. Despite
these challenges, the team successfully conducted benchtop testing and simulations to characterize the
actuator's efficiency and validate our model. Moving forward, we will refine the system identification
process, improve actuator design, and explore the potential for energy regeneration beyond the actuator's
operating bounds. Overall, while we did not achieve all of our intended results, this project has still
provided valuable insights and laid the groundwork for future research in the field of wearable robotics
and in energy regeneration control.

47

6.0 References

[1] B. Laschowski, K. A. Inkol, A. Mihailidis, and J. McPhee, Simulation of energy regeneration in
human locomotion for efficient exoskeleton actuation, 2022. doi:10.1101/2022.06.13.495983

[2] K. Urs, C. E. Adu, E. J. Rouse, and T. Y. Moore, “Design and characterization of 3D printed,
open-source actuators for legged locomotion,” 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Dec. 2022. doi:10.1109/iros47612.2022.9981940

[3] T. Verstraten, R. Furnémont, G. Mathijssen, B. Vanderborght and D. Lefeber, "Energy Consumption
of Geared DC Motors in Dynamic Applications: Comparing Modeling Approaches," in IEEE
Robotics and Automation Letters, vol. 1, no. 1, pp. 524-530, Jan. 2016, doi:
10.1109/LRA.2016.2517820.

[4] T. Verstraten, G. Mathijssen, R. Furnémont, B. Vanderborght, D. Lefeber, “Modeling and design of
geared DC motors for energy efficiency: Comparison between theory and
experiments”,Mechatronics, Volume 30, 2015, Pages 198-213, ISSN 0957-4158,
https://doi.oq1rg/10.1016/j.mechatronics.2015.07.004.

[5] “Micro carbon fiber filled nylon that forms the foundation of Markforged composite parts,”
Markforged [Online]. Available: https://markforged.com/materials/plastics/onyx

[6] B. Laschowski, “Benchtop Testing.” Bionics Lab, University of Toronto, Toronto, Ontario, Canada,
2023

[7] R. Gregg, “Lower-limb kinematics and kinetics during continuously varying human locomotion,”
figshare, https://doi.org/10.6084/m9.figshare.c.5175254.v1

[8] G. Khademi, H. Richter, and D. Simon, “Multi-objective optimization of tracking/impedance control
for a prosthetic leg with energy regeneration,” 2016 IEEE 55th Conference on Decision and Control
(CDC), Dec. 2016. doi:10.1109/cdc.2016.7799085

[9] B. Douglas, “Linear System identification | system identification, part 2,” YouTube,
https://www.youtube.com/watch?v=qC_C04SEV1E&t=560s

48

https://doi.org/10.1016/j.mechatronics.2015.07.004

7.0 Appendix
Appendix A: Problem resolution plan for optimizing robot battery life

Appendix B: Legend of Variable Symbols, Meanings, and Values

Variable Symbol Value

Motor Inertia �
� 90.1 �/��

2

Gear inertia �
� 0.219 ��/�

2

Gear Ratio n 15:1

Gear Efficiency η
�

0.72

Pendulum Length � 0.5 �

Gear Damping � 0.03

Motor Damping �
� 0. 004

��

���

Motor Torque Constant �
�

105 ���/�

Motor Speed Constant �
�

0.094 ���/�

Motor Resistance � 1.42 �ℎ�

Motor Inductance � 1.5 ��

Gravitational acceleration � -9.81 �

�
2

Mass � 0.536 ��

49

