
ECE302 Course Notes

stephy.yang

September 2021

1 Set Theory Review

1.1 Union and Intersection

A ∪B = {x : x ∈ A or x ∈ B}

A ∩B = {x : x ∈ A and x ∈ B}

1.2 Complement

AC = {x : x /∈ A}

1.3 Disjoint Sets

Two sets Ai and Aj are disjoint if

Ai ∩Aj = ∅ ∀i, j i 6= j

1.4 Collectively Exhaustive Sets

Sets Ai, ..., An are collectively exhaustive if

∪Ni=1Ai = S

1.5 Partition

Sets Ai, ..., An are called a partition of S if Ai, ..., An are disjoint and collectively
exhaustive.

1.6 Properties of Sets

1.6.1 Commutative

A ∩B = B ∩A A ∪B = B ∪A
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1.6.2 Associative

A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C

1.6.3 Distributive

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

1.7 Relative Complement/Difference

A−B = {x : x ∈ A and x /∈ B}

A−B = A ∩BC

1.7.1 DeMorgan’s

(A ∪B)C = AC ∩BC (A ∩B)C = AC ∪BC

2 Probability Theory Introduction

2.1 Relative Frequency

Suppose that an experiment is repeated n times under identical conditions. Let
N0(n), N1(n), ..., Nk(n) be the number of times the outcome k happens. Then
the relative frequency of outcome k is

fk(n) =
Nk(n)

n
where lim

n→∞
fk(n) = pk

2.2 Axioms of Probability

P (A) ≥ 0 P [S] = 1

A ∩B = ∅ −→ P (A ∪B) = P (A) + P (B)

P

[ ∞⋃
k=1

Ak

]
=

∞∑
k=1

P [Ak]

If A1, A2 is a sequence of events s.t. Ai ∩Aj = ∅ i 6= j
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2.3 Bayesian Probability

P (A ∪B) = P (A) + P (B)− P (A ∩B)

3 Counting Methods and Sampling

!

Permutations of n distinct objects (k-tuples): n!
Number of ordered samples with size k with re-
placement:

nk

Number of ordered samples with size k without
replacement:

n!
(n−k)!

Number of unordered samples with size k with-
out replacement:

nk = n!
k!(n−k)!

Number of unordered samples with size k and
with replacement:

(
n−1+k

k

)
=
(
n−1+k
n−1

)

3.1 Binomial Coefficient(
n

k

)
=

n!

k!(n− k)!

(
n

k

)
=

(
n

n− k

)

4 Conditional Probability

If A and B are related, then the conditional probability of A given that B (and
P [B] > 0) has occurred is

P [A|B] =
P [A ∩B]

P [B]

5 Theorem of Total Probability

For B1, B2, ..., Bn mutually exclusive events whose union equals the sample
space S (e.g. B1, ..., Bn is a partition of S), then

P [A] = P [A|B1]P [B1]...+ P [A|Bn]P [Bn]

6 Bayes Rule

For B1, B2, ..., Bn a partition of sample space S,

P [Bj |A] =
P [A ∩Bj ]

P [A]
=

P [A|Bj ]P [Bj ]∑n
k=1 P [A|Bk]P [Bk]
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7 Independence

If knowledge of the occurrence of event B does not alter the probability of event
A, then event A is independent of B.

P [A] = P [A|B] =
P [A ∩B]

P [B]

Define A, B to be independent if

P [A ∩B] = P [A]P [B]

Then

P [A|B] = P [A] , P [B|A] = P [B]

P [AC ∩BC ] = P [AC ]P [BC ]

7.1 Notes on Independence

If two events have nonzero probability (P [A] > 0, P [B] > 0), and are mutually
exclusive, then they cannot be independent

7.2 Triplet Independence

For three events A,B,C to be independent,

• A,B,C Pairwise Independent

• knowledge of occurrence of any two events (e.g. A,B) should not effect
the prob of the third (C)

7.2.1 Pairwise Independence

P [A ∩B] = P [A]P [B] P [A ∩ C] = P [A]P [C]

P [B ∩ C] = P [B]P [C]

7.2.2 Independence of Events

P [C|A ∩B] =
P [A ∩B ∩ C]

P [A ∩B]
= P [C]

Finally, for Triplet Independence, we must have

P [A ∩B ∩ C] = P [A]P [B]P [C]
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8 Sequential Experiments

8.1 Bernoulli Trials

Let k be the num of successes in n independent Bernoulli trials. Then the
probabilities of k are given by binomial probability law

pn(k) =

(
n

k

)
pk(1− p)n−k for k = 0, ..., n

8.2 Multinomial Probability Law

Let B1, B2, ..., BM be a partition of the sample space S, and let P [Bj ] = pj .
Also, the events are disjoint:

p1 + p2 + ...+ pM = 1

The multinomial probability law is

P [(k1, ..., kM )] =
n!

k1!...kM !
pk1
1 ...p

kM

M

8.3 Geometric Probability Law

The probability that more than K trials are required before a success (with
probability p, q = 1 − p) occurs in a series of repeated independent Bernoulli
trials is

P [m > K] = p

∞∑
m=K+1

qm−1 = pqK
1

1− q
= qK

The probability that K trials are required for a success (with probability
p, q = 1− p) is

P [m = K] = (p)(1− p)(K−1) = pq(K−1)

8.3.1 Hypergeometric Distribution

P (X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

)
Where K is the number of success in the population, k is the number of

observed successes, N is the population size, and n is the sample size.

9 Random Variables (RV)

A Random Variable X is a function that assigns a real number X(ζ) to each
outcome ζ in the sample space of a random experiment.
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10 Discrete Random Variable (DRV)

A Discrete Random Variable X is defined as a random variable that assumes
values from a countable set.

10.1 PMF

pX(x) = P [X = x] = P [{ζ : X(ζ) = x} x ∈ R

For xk in SX , pX(xk) = P [Ak]

10.1.1 PMF Properties

pX(x) ≥ 0 ∀x∑
x∈SX

pX(x) =
∑
k

pX(xk) =
∑
k

P [Ak] = 1

P [XinB] =
∑
x∈B

pX(x) whereB ⊂ SX

10.2 Conditional PMF

Let X be a DRV with PMF PX(x), and ∃C,P [C] > 0. The Conditional PMF
is given by

pX(x|C) = P [X = x|C] =
P [{X = x} ∩ C]

P [C]

10.3 Expected Value

The expected value (or mean) of a DRV is

E[X] =
∑
x∈SX

xpX(x) =
∑
k

xkpX(xk)

∃E[|x|] =
∑
k

|xkpX(xk)| <∞

10.4 Variance, Standard Deviation

The variance of a random variable X is

σ2
X = VAR[X] = E[(X − E[X])2] = E[X2]− (E[X])2

The Standard Deviation is

σX = STD[X] =
√

VAR[X]
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10.5 Expected Value and Variance Properties

E[g(X) + h(X)] = E[g(X)] + E[h(X)]

E[aX] = aE[X] E[X + c] = E[X] + c

(cX) = c2(X) (X + c) = (X)

10.6 Conditional Expected Value

For X a DRV, and suppose we know B has occured,

mX|B = E[X|B] =
∑
x∈Sx

xpX(x|B)

=
∑
k

xkPX(xk|B)

10.7 Conditional Variance

VAR[X|B] = E[(X −mX|B)2|B] =

∞∑
k=1

(Xk −mX|B)2pX(xk|B) = E[X2|B]−m2
X|B

11 Cumulative Distribution Function

PMF’s use events {X = b}, whereas Cumulative Distribution Functions (CDF)
use events {X ≤ b}.

FX(x) = P [X ≤ x]

11.1 Properties of the CDF

0 ≤ FX(x) ≤ 1

lim
x→∞

FX(x) = 1 lim
x→−∞

FX(x) = 0

FX(a) ≤ FX(b) ∀a < b

FX(b) = lim
h→0

FX(b+ h) = FX(b+)

P [a < X ≤ b] = FX(b)− FX(a)

P [X = b] = FX(b)− FX(b−)

P [X > x] = 1− FX(x)
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11.2 CDF of a Discrete RV

FX(x) =
∑
xk≤x

pX(xk) =
∑
k

PX(xk)u(x− xk)

11.3 CDF of a Continuous RV

FX(x) =

∫ x

−∞
f(t)dt

11.4 Conditional CDF

FX(x|C) =
P [{X ≤ x} ∩ C]

P [C]
if P [C] > 0

12 Probability Density Function

fX(x) =
d

dx
FX(x)

12.1 Properties of the PDF

fX(x) ≥ 0 1 =

∫ ∞
−∞

fX(x)dx

P [a ≤ X ≤ b] =

∫ b

a

fX(x)dx

FX(x) =

∫ x

−∞
fX(t)dt

12.2 PDF of a Discrete RV

u(x) =

∫ x

−∞
δ(t)dt

fX(x) =
d

dx
FX(x) =

∑
k

pX(xk)δ(x− xk)

12.3 Conditional PDF

fX(x|C) =
d

dx
FX(x|C)
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12.4 Application of Theorem of Total Probability

Suppose events B1, B2, ..., Bn partition the sample space S.

Fx(x) =

n∑
i=1

P [X ≤ x|Bi]P [Bi]

=

n∑
i=1

FX(x|Bi)P [Bi]

fX(x) =
d

dx
FX(x) =

n∑
i=1

fX(x|Bi)P [Bi]

13 Gaussian (Normal) RV

The PDF for the Gaussian Random Variable is given in the table.

13.1 Gaussian CDF

φ is the CDF for a standard Gaussian.

φ(z) = φ

(
x−m
σ

)
= P [X ≤ x] = FX(x)

φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt

13.2 Q Function

Q(x) =
1√
2π

∫ ∞
x

e−t
2/2dt

Q(z) = 1− φ(z) = P [X > x]

Q(0) = 1/2 Q(−x) = 1−Q(x)

13.3 Standard Gaussian RV

To move from any Gaussian to Standard (i.e. X ∼ N(m,σ2) → z ∼ N(0, 1)),
use

z =
x−m
σ

14 Other Features of CRV’s

14.1 Expected Value

E[X] =

∫ +∞

−∞
tfX(t)dt
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14.1.1 Expected Value of Y=g(X)

E[Y ] =

∫ ∞
−∞

g(x)fX(x)dx

14.1.2 Conditional Expected Value

E[X|A] =

∫ ∞
−∞

xfX(x|A)dx

14.2 Variance, Standard Deviation

The variance of a random variable X is

VAR[X] = E[(X − E[X])2] = E[X2]− (E[X])2

The standard deviation is

STD[X] =
√

VAR[X]

14.3 Nth Moment

The nth moment of a random variable X is given by

E[Xn] =

∫ ∞
−∞

xnfX(x)dx

15 Functions of RVs - CDF, PDF of Y

fY (y) =

n∑
i=1

fX(xi)

|g′(i)|

fY (y) =
∑
k

fX(x)

dy/dx

∣∣∣∣∣
x=xk

=
∑
k

fX(x)

∣∣∣∣dxdy
∣∣∣∣
∣∣∣∣∣
x=xk

16 Bounds on Probability

16.1 Markov Inequality

Suppose X is a RV with mean E[X]. Then

P [X ≥ a] ≤ E[X]

a
for X nonnegative
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16.2 Chebyshev Inequality

Suppose X is a RV with mean m = E[X and variance σ2.

P [|X −m| ≥ a] ≤ σ2

a2
D2 = (X −m)2 −→

P [D2 ≥ a2] ≤ E[(X −m)2]

a2
=
σ2

a2

16.3 Chernoff Bound

P [X ≤ a] = e−saE[esX ]

17 Characteristic Function

φX(ω) = E
[
ejωX

]
=

∫ ∞
−∞

fX(x)ejωxdx

fX(x) =
1

2π

∫ ∞
−∞

φX(ω)e−jωxdω

17.1 Characteristic Function for DRV’s

φX(ω) =
∑
k

PX(xk)ejωxk , X a DRV

φX(ω) =

∞∑
−∞

PX(k)ejωk , X ∈ Z

17.2 Moment Theorem

E [Xn] =
1

jn
dn

dωn
φX(ω)

∣∣∣∣
ω=0

18 Moment Generating Function

M(s) = E[esX ] = Φ(−js)

19 Probability Generating Function

GN (z) = E
[
zN
]

=

∞∑
k=0

pN (k)zk
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19.1 Characteristic Function

GN (ejω) = φN (ω)

19.2 PMF Relationship

PMF: pN (k) =
1

k!

dk

dzk
GN (k)

∣∣∣∣
z=0

20 Laplace Transform of PDF

X(s) =

∫ ∞
0

fX(x)e−sxdx = E[e−sX ]

E[Xn] = (−1)n
dn

dsn
X(s)

∣∣∣∣
s=0

21 Joint PMF

pX,Y (x, y) = P [{X = x} ∩ {Y = y}]

P [X inB] =
∑

(xj ,yk) in B

∑
pX,Y (xj , yk)

∞∑
j=1

∞∑
k=1

pX,Y (xj , yk) = 1

22 Marginal PMF

pX(xj) = P [X = xj ] =

∞∑
k=1

pX,Y (xj , yk)

23 Joint CDF

FX,Y (x1, y1) = P [X ≤ x1, Y ≤ Y1]
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23.1 Properties of the Joint CDF

FX,Y (x1, y1) ≤ FX,Y (x2, y2)

for x1 ≤ x2, y1 ≤ y2

FX,Y (x1,−∞) = 0, FX,Y (−∞, y1) = 0, FX,Y (∞,∞) = 0

FX(x1) = FX,Y (x1,∞) FY (y1) = FX,Y (∞, y1)

lim
x→a+

FX,Y (x, y) = FX,Y (a, y)

lim
x→b+

FX,Y (x, y) = FX,Y (x, b)

P [x1 < X ≤ x2, y1 < Y ≤ y2] = FX,Y (x2, y2)

−FX,Y (x2, y1)− FX,Y (x1, y2) + FX,Y (x1, y1)

24 Joint PDF

fXY (x, y) =
∂2FXY (x, y)

∂x∂y

P [X ∈ B] =

∫
B

∫
fX,Y (x, y)dxdy

FXY (x, y) = P [X ≤ x, Y ≤ y]

FXY (x, y) =

∫ y

−∞

∫ x

−∞
fXY (x, y)dxdy∫ ∞

−∞

∫ ∞
−∞

fXY (x, y)dxdy = 1

25 Marginal PDF

fX(x) =

∫ ∞
−∞

fXY (x, y)dy

25.1 Properties of the Marginal PDF

fX(x) ≥ 0 fY (y) ≥ 0
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26 Independence of RV’s

X and Y are independent if for any X ∈ A, Y ∈ B

P [X ∈ A, Y ∈ B] = P [X ∈ A]P [Y ∈ B]

If X, Y independent, then

pXY (xj , yk) = P [X = xj , Y = yk] =

P [X = xj ]P [Y = yk] = pX(xj)pY (yj)

X, Y independent iff

FXY (x, y) = FX(x)FY (y)

fXY (x, y) = fX(x)fY (y) ifX,Y jointly cont.

27 Expected Value for Functions of 2 RVs

If X,Y discrete:

E[X] = g(xj , yk)pXY (xj , yk)

If X,Y continuous:

E[X] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)fXY (x, y)dxdy

E[X + Y ] = E[X] + E[Y ]

27.1 Expected Value and Independence

Let g(X,Y ) = g1(X)g2(Y ), and X,Y independent

Z = XY ↔ E[Z] = E[XY ] = E[X]E[Y ]

E[g(X,Y )] = E[g1(X)]E[g2(Y )]

28 Joint Moment

If X,Y discrete:

E[XjY k] =
∑
i

∑
n

xjiy
k
npXY (xi, yn)

If X,Y jointly continuous:

E[X] =

∫ ∞
−∞

∫ ∞
−∞

xjykfXY (x, y)dxdy
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28.1 Correlation

E[XY ] = E[Xj=1Y k=1]

If E[XY ] = 0, then X, Y are orthogonal.

28.2 Central Moment

E[(X − E[X])j · (Y − E[Y ])k]

28.2.1 Variance

VAR(X) = E[(X − E[X])2 · (Y − E[Y ])0]

VAR(X) = E[(X − E[X])2]

29 Covariance

COV(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[(X − E[X])1 · (Y − E[Y ])1] = E[XY ]− E[X]E[Y ]

If E[X] = 0 and/or E[Y ] = 0, then

COV(X,Y ) = E[XY ]

29.1 Correlation Coefficient

ρXY =
COV(X,Y )

σXσY
, −1 ≤ ρXY ≤ 1

If X,Y uncorrelated, then

COV(X,Y ) = 0, E[XY ] = E[X]E[Y ], ρXY = 0

If X,Y independent, then they are uncorrelated.

29.2 Covariance Properties

(X,X) = (X) (X,Y ) = (Y,X)

(αX, Y ) = α(X,Y )

(X + c, Y ) = (X,Y )

(X + Y,Z) = (X,Z) + (Y,Z)
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30 Conditional Probabilities

30.1 Case 1: X, Y Discrete - Conditional PMF

pY (y|x) = P [Y = y|X = x] =

=
P [X = x, Y = y]

P [X = x]
=
pXY (x, y)

pX(x)

pY (yk|xj) =
pXY (xj , yk)

pX(xj)
−→

pXY (xj , yk) = pY (yk|xj) · pX(xj)

P [Y ∈ A|X = xk] =
∑
yj∈A

pY (yj |xk)

P [Y ∈ A] =
∑
xk

P [Y ∈ A|X = xk]pX(xk)

30.2 Case 2: X discrete, Y continuous - Conditional PDF

FY (y|xk) =
P [Y ≤ y,X = xk]

P [X = xk]
, P [X = xk] > 0

fY (y|xk) =
d

dy
FY (y|xk)

If X, Y independent,

P [Y ∈ A|X = xk] =

∫
y∈A

fY (y|xk)dy

30.3 Case 3: X, Y continuous - Conditional PDF

fY (y|x) =
d

dy
FY (y|x) =

fXY (x, y)

fX(x)

P [Y ∈ A|X = x] =

∫
y∈A

fY (y|x)dy

P [Y ∈ A] =

∫ ∞
−∞

P [Y ∈ A|X = x]fX(x)dx

If X, Y independent,

fY (y|x) =
fX(x)fY (y)

fX(x)
= fY (y)
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30.4 Bayes Rule

fY (y|x) =
fXY (x, y)

fX(x)

fXY (x, y) = fY (y|x)fX(x) = fX(x|y)fY (y)

fY (y|x) =
fXY (x|y)fY (y)

fX(x)

31 Conditional Expectation

31.1 X,Y Discrete

E[Y |x] =
∑
yk

pY (yk|x)

31.2 X,Y Continuous

E[Y |x] =

∫ ∞
−∞

yfY (y|x)dy

31.3 Law of total Expectation

Since E[Y |x] = g(X), we define E[g(x)]

E[E[Y |x]] =

∫ ∞
−∞

E[Y |x]fX(x)dx = E[Y ]

for any function h(Y ), where E[h(Y )] = E[E[h(Y |x)]]

E[Y k] = E[E[Y k|x]]

32 Functions of Two RVs

Let Z = g(X,Y ) (function of two RVs). Then,

FZ(z) = P [X ∈ Rz] =(x,y)∈ Rz
fXY (x, y)dxdy

fZ(z) =
d

dz
FZ(z) =

∫ ∞
−∞

fXY (x, z − x)dx

If X, Y independent, then

fZ(z) = fX(x) ∗ fY (y) =

∫ ∞
−∞

fX(x)fY (z − x)dx
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33 Transformations of Two RVs

Let W = (X,Y ) and Z1 = g1(W ) and Z2 = g2(W )

Fz1,z2(z1, z2) = P [g1(W ) ≤ z1, g2(X) ≤ z2]

Fz1,z2(z1, z2) =W :gk(W )≤zk fXY (x, y)dxdy

34 Linear Transformations

VW = abcdXY = AXY

Assume A is invertible:

XY = A−1VW

34.1 Joint PDF of Linear Transformation

Let Z = g(X,Y ). The vector Z is:

Z = AW Z = VW W = XY

The Joint PDF of Z is

fZ(z) =
fW (A−1z)

|A|
|A| = det abcd

35 Joint Gaussian RVs

The random variables X, Y are jointly gaussian if:

fX,Y (x, y) =
1

2πσ1σ2
√

1− ρ2XY

exp(A)

A =
−1

2(1− ρ2XY )

[(
x−m1

σ1

)2

− 2ρXY

(
x−m1

σ1

)(
y −m2

σ2

)
+

(
y −m2

σ2

)2 ]

35.1 Joint Standard (Normal) Gaussians

If X N(0, 1) , Y N(0, 1), then

fXY (x, y) =
1

2π
√

1− ρ2XY

exp(A)

A =
1

2(1− ρ2)

(
x2 − 2ρXY · xy + y2

)
fXY (x, y) = g(r) = C exp

[
−r2

2σ2

]
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35.2 Independence (m=0,σ=1)

If X, Y independent ↔

COV(X,Y ) = 0 ρXY (x, y) = 0

fXY (x, y) =
1

2π
exp

(
−1

2
(x2 + y2)

)

35.3 Independence (m=0)

If X N(0, 1) , Y N(0, 1), then

fXY (x, y) =
1

2πσ2
exp

(
− 1

2σ2
(x2 + y2)

)

35.4 Constant A

If A (exponent of Joint Gaussian) is a constant K

K =

[(
x−m1

σ1

)2

−+

(
y −m2

σ2

)2 ]

fXY (x, y) = Cexp

[
− 1

2(1− ρ2)
K

]
= constant

35.5 Major Axis

If X, Y not independent, then the principal axes has

θ =
1

2
arctan−1 tan

(
2ρXY σ1σ2
σ2
1 − σ2

2

)

35.6 Conditional PDF

The conditional PDF of X given Y = y is

fX(x|y) =
fXY (x, y)

fY (y)
=

1

2πσ2
1

√
1− ρ2XY

·exp

(
−1

2(1− ρ2XY σ
2
1)

[
x− ρXY

σ1
σ2

(y −m2)−m1

]2)

35.7 Conditional Expectation

E[(X−m1)(Y−m2)|Y ] = (y−m2)E[X−m1|Y = y] = (y−m2)

(
ρXY

σ1
σ2

(y −m2)

)
= ρXY

σ1
σ2

(y−m2)2
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35.8 Covariance

COV(X,Y ) = E[(X −m1)(Y −m2)] = E[E[(X −m1)(Y −m2)|Y ]] = ρXY σ1σ2

36 Sum of RVs

Let X1, X2, ..., Xn be a sequence of RVs, with

Sn = X1 +X2 + +Xn

36.1 Mean and Variance of Sum of RVs

E[X1 +X2 + +Xn] = E[X1] + E[X2] + +E[Xn]

(X1 + +Xn) =

n∑
k=1

(Xk) +
∑
j=1

∑
k=1

(Xj , Xk), j 6= k

If X1, X2, ..., Xn independent, then

(X1 + +Xn) = (X1) + +(Xn)

36.2 PDF of Sums of Independent RVs

Let X1, X2, ..., Xn independent, then

φSn
(ω) = E[ejωSn ] = E[ejω(X1+X2++Xn)]E[ejωX1 ]E[ejωXn ] = φX1

(ω)φXn
(ω)

fSn
=−1 [φX1

(ω)φXn
(ω)]

37 Independent Identically Distributed RVs (iid)

If X1, X2, ..., Xn iid RVs, with

E[Xj ] = mx (Xj) = σ2
x for j = 1, ..., n

37.1 Mean and Variance of iid RVs

E[Sn] = E[X1] + +E[Xn] = n ·mx

(Sn) = n · (Xj) = nσ2
x

37.2 PDF of iid RVs

φXk
(ω) = φX(ω) , k = 1, ..., n↔ φSN

(ω) = [φX(ω)]n

fSn =−1 (φSn(ω)) =−1 (φX(ω)n)
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38 Sample Mean

Mn =
1

n

n∑
j=1

Xj

38.1 Expected Value and Varianceof Sample Mean

E[Mn] = E

 1

n

n∑
j=1

Xj

→ E[Mn] =
1

n

n∑
j=1

E[Xj ]

(Mn) = E
[
(Mn − E[Mn])2

]
= (Sn)/n2

if X1, , Xn iid RVs:

E[Mn] = mx ↔ E[Sn] = n ·mx

(Sn) = nσ2 ↔ (Mn) =
σ2

n

38.2 Sample Mean Chebyshev Bound

P [|Z − E[Z]| ≥ ε] ≤ (Z)

ε2
, ε > 0

P [|Mn −mx| ≥ ε] ≤
σ2

nε2

P [|Mn −mx| < ε] ≥ 1− σ2

nε2

39 Laws of Large Numbers

Weak Law : lim
n→∞

P [|Mn −mx| < ε] = 1

Strong Law : P
[

lim
n→∞

Mn = mx

]
= 1

40 Central Limit Theorem

Let Sn = X1, X2, ..., Xn iid RVs

lim
n→∞

P [Zn ≤ z] =
1√
2π

∫ z

∞
e−x

2/2dx
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