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1 Set Theory Review

1.1 Union and Intersection

AUB={x:x€A or z€B}

ANB={z:x€A and z€ B}

1.2 Complement
AC ={z:z¢ A}

1.3 Disjoint Sets

Two sets A; and A; are disjoint if
AiNAj =@ Yi,ji#j

1.4 Collectively Exhaustive Sets

Sets A;, ..., A, are collectively exhaustive if

UN A, =8

1.5 Partition

Sets A, ..., A, are called a partition of S if A;, ..., A,, are disjoint and collectively
exhaustive.

1.6 Properties of Sets

1.6.1 Commutative

ANnB=BnA AUB=BUA



1.6.2 Associative
AU(BUC)=(AUB)UC
An(BNC)=(AnB)NnC
1.6.3 Distributive
AU(BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)
1.7 Relative Complement /Difference
A-B={z:x€A and xz¢ B}
A-B=AnB°

1.7.1 DeMorgan’s
(AUB)Y = A°NBY (AnB)° = AU B°

2 Probability Theory Introduction

2.1 Relative Frequency

Suppose that an experiment is repeated n times under identical conditions. Let
No(n), Ni(n), ..., Ng(n) be the number of times the outcome k happens. Then
the relative frequency of outcome k is

Ni(n)

fe(n) =

where lim fx(n) = pg
n—oo

2.2 Axioms of Probability

ANB=o — P(AUB)=P(A)+ P(B)

G Ap| = iP[Ak]
k=1 k=1

If Ay, Ay is a sequence of events s.t. A, NA; =3 1#7]

P




2.3 Bayesian Probability
P(AUB) = P(A) + P(B) — P(AN B)

3 Counting Methods and Sampling

Permutations of n distinct objects (k-tuples): n!
Number of ordered samples with size k with re- | nF
placement:
Number of ordered samples with size k without (n%'k),

!'| replacement:
Number of unordered samples with size k with- | nk = 2

kl(n—k)!
out replacement:

T = )

Number of unordered samples with size k and k ol

with replacement:

3.1 Binomial Coefficient

()= ()=

4 Conditional Probability

If A and B are related, then the conditional probability of A given that B (and
P[B] > 0) has occurred is

P[AN B]

PUAIB) = =5

5 Theorem of Total Probability

For By, Bs, ..., B, mutually exclusive events whose union equals the sample
space S (e.g. By, ..., B, is a partition of S), then

P[A] = P[A|B1)P[Bi]... + P|A|B,]P[B.]

6 Bayes Rule

For By, Bs, ..., B, a partition of sample space .S,

P[AN Bj] P[A|B,]P[B;]

PIBA = =501 = S PIAIBJPIB




7 Independence

If knowledge of the occurrence of event B does not alter the probability of event
A, then event A is independent of B.

PIAN B]

PIA] = PLAIB] = =5

Define A, B to be independent if
P[AN B] = P[A]P[B]
Then
PlA|B] = P[A], P[B|A] = P[B]
P[AY N BY] = P[A°]P|BY]

7.1 Notes on Independence

If two events have nonzero probability (P[A] > 0, P[B] > 0), and are mutually
exclusive, then they cannot be independent

7.2 Triplet Independence
For three events A, B, C to be independent,

e A B,C Pairwise Independent

e knowledge of occurrence of any two events (e.g. A, B) should not effect
the prob of the third (C)

7.2.1 Pairwise Independence
P[AN B] = P[A]P|B] P[ANC]= P[A]P[C]
P[BNC] = P[B]P|C]
7.2.2 Independence of Events

P[ANnBNC]

PICIANB] = — o

= P[C]

Finally, for Triplet Independence, we must have

P[ANBNC] = P[A]P|B]P[C]



8 Sequential Experiments

8.1 Bernoulli Trials

Let k& be the num of successes in n independent Bernoulli trials. Then the
probabilities of k are given by binomial probability law

pn(k) = (Z)pk(l —p)"F for k=0,..,n
8.2 Multinomial Probability Law

Let Bi, Bs, ..., By be a partition of the sample space S, and let P[B;] = p;,.
Also, the events are disjoint:

pr+p2+...+pu=1
The multinomial probability law is

n! & &
1 M
1P1-Py

8.3 Geometric Probability Law

The probability that more than K trials are required before a success (with
probability p,g = 1 — p) occurs in a series of repeated independent Bernoulli
trials is

oo - 1
Plm> K] =p Z q 1:quf:qK
m=K+1 q

The probability that K trials are required for a success (with probability
p.g=1-p)is

Plm = K] = (p)(1 —p)K =" = pg! "=V

8.3.1 Hypergeometric Distribution
() Git)
()

Where K is the number of success in the population, &k is the number of
observed successes, N is the population size, and n is the sample size.

P(X =k) =

9 Random Variables (RV)

A Random Variable X is a function that assigns a real number X (¢) to each
outcome ( in the sample space of a random experiment.



10 Discrete Random Variable (DRV)

A Discrete Random Variable X is defined as a random variable that assumes
values from a countable set.

10.1 PMF

px(z) = PIX =] = P[{C: X() =2} z€R

For z in Sx, px(zr) = P[Ag]

10.1.1 PMF Properties

px(z) >0 Vz

Z px(z) = ZPX(l'k) = ZP[AIC] =1
PlXinB] = ZPX(«T) where B C Sx
©€B

10.2 Conditional PMF

Let X be a DRV with PMF Px (), and 3C, P[C] > 0. The Conditional PMF
is given by

px(2|C) = P[X = 2|C] = P[{XP:[(;}W

10.3 Expected Value

The expected value (or mean) of a DRV is

E[X] = Z wpx (r) = Zﬂﬁkpx(xk)
k

TE€Sx

3E[zl) = |owpx (zx)] < 00
k

10.4 Variance, Standard Deviation

The variance of a random variable X is
0% = VAR[X] = E[(X — E[X])?] = E[X?] — (E[X])?
The Standard Deviation is

ox = STD[X] = /VAR[X]



10.5 Expected Value and Variance Properties

Elg(X) + h(X)] = E[g(X)] + E[h(X)]
ElaX]=aE[X] EX+=E[X]+c

(eX)=cH(X) (X+c)=(X)

10.6 Conditional Expected Value
For X a DRV, and suppose we know B has occured,

mx g = E[X|B] = Z xpx (x| B)
€S,

k

10.7 Conditional Variance

VAR[X|B] = E[(X —mx5)?|B] =

> (Xy = mx ) px (x| B) = E[X?|B] — m
k=1

11 Cumulative Distribution Function

PMF’s use events {X = b}, whereas Cumulative Distribution Functions (CDF')

use events {X < b}.

Fx(z) = P[X < a]
11.1 Properties of the CDF

0< Fy(z) <1
lim Fx(z) =1 lim Fx(z)=0
T—00 T——00

Fx(a) < Fx(b) Ya <b
Fx(b) = lim Fx(b+h) = Fx(b™)

Pla < X <b] = Fx(b) — Fx(a)
PIX =b]=Fx(b) — Fx(b7)
PIX >a] =1 - Fx(x)



11.2 CDF of a Discrete RV

Fx() = Y px(zx) = > Px(wp)u(z —zx)

zp<x k

11.3 CDF of a Continuous RV
Fx()= [ s

11.4 Conditional CDF

Pl{X <z}nC]

if P[C] >0

12 Probability Density Function

Fx(@) = - Fx(a)

12.1 Properties of the PDF

fx(@) >0 h[fh@m
b
PMSXSH:/jﬂ@m

Fx(z) :/ fx(t)dt

12.2 PDF of a Discrete RV
u(zx) = /I o(t)dt
d
fx(@) = - Fx(z) = > px(x)d(z — )
k
12.3 Conditional PDF
C) = d F C
Ix(z|C) = Iz X (2]C)

8



12.4 Application of Theorem of Total Probability

Suppose events By, Bo, ..., B, partition the sample space S.

PH@:E:HXSﬂ&WBA

:zy&mawwd
fxla) = T Fx() = Y FxalB)PIB
=1

13 Gaussian (Normal) RV

The PDF for the Gaussian Random Variable is given in the table.

13.1 Gaussian CDF
¢ is the CDF for a standard Gaussian.

¢<z>=¢(

o(z) = \/%/I 67t2/2dt

r—m

>:HX§ﬂ=Fﬂm

13.2 Q Function

oras
Q(z) =1-¢(z) = P[X >
Q) =1/2 Q(—z) =1-Q(z)

13.3 Standard Gaussian RV

To move from any Gaussian to Standard (i.e. X ~ N(m,0?) — 2z ~ N(0,1)),
use
x—m
pA—

g

14 Other Features of CRV’s

14.1 Expected Value
+o0
mmz/ tix (t)dt

9



14.1.1 Expected Value of Y=g(X)

Byl = [ " g(@) fx ()

14.1.2 Conditional Expected Value

E[X|A] = /700 zfx(z|A)dx

14.2 Variance, Standard Deviation

The variance of a random variable X is
VAR[X] = E[(X — E[X])?] = E[X?] — (E[X])?
The standard deviation is
STD[X] = v/ VAR[X]
14.3 Nth Moment

The nth moment of a random variable X is given by

E[X"] = /OO 2" fx (x)dx

—0o0

15 Functions of RVs - CDF, PDF of Y

fr(y) = ; JIC;(,EZ;)LF

_ o fx(@) _ N
fY(y)_Zk:dy/dx —zk:fx( ) dy

16 Bounds on Probability

16.1 Markov Inequality
Suppose X is a RV with mean E[X]. Then

EX]

P[X >a] <
a

for X nonnegative

10



16.2 Chebyshev Inequality

Suppose X is a RV with mean m = E[X and variance o2.

[ V)

g

P[|X —m|>d <= D*=(X-m)? —

Q

P[D? > d?]

A
I
|

16.3 Chernoff Bound

P[X < a] = e " E[e*¥]
17 Characteristic Function
¢x(w) = E [eX] = / " x(@)erds
_ 1 > 7jwmd
fx(z) = e dx(w)e w
17.1 Characteristic Function for DRV’s
¢x(w) =Y Px(zr)e*™ X a DRV
k
¢x(w) =Y Px(k)e* X e

17.2 Moment Theorem

Blxm =L@

- ]n dwn

Px (w) -
18 Moment Generating Function

M(s) = E[e*¥] = &(~js)

19 Probability Generating Function

Gn(z) =E[2N] = ZpN(k)zk
k=0

11



19.1 Characteristic Function

Gn(e™) = ¢n(w)

19.2 PMF Relationship

20

21

22

23

1 dF

Gn(k)

z=0

Laplace Transform of PDF

X(s) = /O T fe(@)eds = Ble—*X]

BX) = (-1 X ()

s=0

Joint PMF

pxy(z,y) = P{X =2} n{Y = y}]

PXinB] = Z ZPX,Y(ij»yk)

(z;,y5) In B

oo 00
ZZPX,Y(xj,yk.) -1
j=1k=1

Marginal PMF

px(r5) = PIX = ;] = pxv(w;, )
k=1

Joint CDF

Fxy(z1,y1) = PX <21,Y <Yq]

12



23.1 Properties of the Joint CDF

Fxy(z1,y1) < Fx,y(x2,y2)
for 1 < xo,y1 < Yo
Fx_’y(l’l, —OO) = O,FX7y(—OO,y1) = O,FX7y(oo, OO) = O

Fx(x1) = Fxy(z1,00) Fy(y1) = Fx,y(c0,y1)

lim F‘X7y(1‘7 y) = FX,Y(ay y)
r—a™t

liril+ Fxy(z,y) = Fxy(z,b)

r—r

Plz1 < X <xo,y1 <Y < yo] = Fxy(x2,y2)

—Fxy(xz2,y1) — Fxy(z1,92) + Fx,yv(21,y1)

24 Joint PDF

82ny(ar,y)

fxv(z,y) = 920y

P[X € B] = /B/fx,y(xyy)dxdy

ny(x,y)ZP[XSx,YSy]

Fxy(z,y) Z/_J /_ Ixy (x,y)dxdy

/_O; /_O; fxv (z,y)dedy = 1

25 Marginal PDF

fX(x):/ fxy(z,y)dy
25.1 Properties of the Marginal PDF

Ix(xz) >0 fy(y) >0

13



26 Independence of RV’s
X and Y are independent if for any X € A, Y € B
P[X € A)Y € B] = P[X € A]P|Y € B
If X, Y independent, then
pxy (zj,yk) = PIX = ;Y = yi] =

P[X = a;]P[Y = yi] = px(2;)py (y;)
X, Y independent iff

Fyy(z,y) = Fx(2)Fy (y)
Ifxy(x,y) = fx(2)fy (y) if X,Y jointly cont.

27 Expected Value for Functions of 2 RVs
If X,Y discrete:

E[X] = g(xj’yk)pXY(xjvyk)

If X,Y continuous:

ElX] = /_O; /_O; 9(z,y) [xy (x,y)dxdy

E[X +Y] = E[X] + E[Y]

27.1 Expected Value and Independence
Let g(X,Y) = g1(X)g2(Y), and X,Y independent

Z = XY « E[Z] = E[XY] = E[X]E[Y]
Elg(X,Y)] = E[g1(X)]|E[g2(Y)]

28 Joint Moment

If XY discrete:
BXIYR =YY " alybpxy (wi,yn)
If X,Y jointly continuous:

E[X] = /_OO /_OO xjykfxy(x7y)d;vdy

14



28.1 Correlation

E[XY] = E[X/=ly*=1]

If E[XY] =0, then X, Y are orthogonal.
28.2 Central Moment
E[(X — E[X]) - (Y — E[Y])"]
28.2.1 Variance

VAR(X) = E[(X — E[X])?- (Y — E[Y])]
VAR(X) = E[(X — E[X])?]

29 Covariance

COV(X,Y) = E[(X — EIX]))(Y — E[Y))]
= B[(X - E[X])" - (Y - E[Y])'] = E[XY] - E[X]E[Y]
If E[X] =0 and/or E[Y] =0, then
COV(X,Y) = E[XY]

29.1 Correlation Coefficient

COV(X,Y
PXYzi( )7 -1<pxy <1
OxXO0y

If X,Y uncorrelated, then
COV(X,Y)=0, FE[XY]|=E[X]E]Y], pxy =0

If X,Y independent, then they are uncorrelated.

29.2 Covariance Properties

(X, X) = (X) (X,Y)=(Y,X)

(aX,Y) =a(X,Y)
(X +¢Y)=(X,Y)
(X+Y,2)=(X,2)+(Y,2)

15



30 Conditional Probabilities
30.1 Case 1: X, Y Discrete - Conditional PMF

py(yla) = PIY = y|X = 2] =
PX =z,Y =y pxv(z,y)

PIX =] px(z)

pxv (25, k)
Py Yk|Tj) = ———————
( | J) pX(xj)

pXY(xjayk) = py(yklxj) 'px(l’j)

PlY € AIX = mi] = Y py(y;lan)
yj€A
PlY € A] = ZP[Y € A|X = zk|px (2k)

Tk

30.2 Case 2: X discrete, Y continuous - Conditional PDF

P[Y§y7X:zk}
P[X:.”L'k]

Fy (ylzx) = PIX =x4] >0

hmmwi%wwm>

If X, Y independent,

PlY € A|X =z = / Afy(ylka)dy
ye

30.3 Case 3: X, Y continuous - Conditional PDF

PV €AX =al= [ F(slody
ye

PlY € A] = / PlY € A|X = z]fx(z)dx
If X, Y independent,

_ fx@)fyly)
fr(ylz) = @ fr(y)

16



30.4 Bayes Rule
[xv(z,y)
fr(wle) = fx(z)

Ixvy(m,y) = fy(ylz) fx (v) = fx(xly) fy (y)

~ Ixy(=ly) fr (y)

31 Conditional Expectation

31.1 X,Y Discrete

E[Y|z] = Zpy Yi|T)
31.2 X,Y Continuous

Byl = [ T uhy (gla)dy

31.3 Law of total Expectation
Since E[Y|z] = g(X), we define E[g(x)]

BlEVl] = [ BYialfx(@)de = By
for any function h(Y'), where E[h(Y)] = E[E[h(Y]|z)]]

E[Y*] = BIE[Y"|z]]

32 Functions of Two RVs

Let Z = g(X,Y) (function of two RVs). Then,

Fz(z) = P[X € R.] = yer. [xy(z,y)dzdy

d
fz( I / fxy(x, 2z — )
If X, Y independent, then

f2(2) = Ix(@) < fro) = [ T @) fy (= — 2)da

17



33 Transformations of Two RVs
Let W= (X,Y) and Z; = g1(W) and Z3 = go(W)
FZ],Z:»(Zl’Z?) = P[QI(W) < 21792(X) < 22]

Fo 20 (21, 22) =w.g,(w)<z, fxv(z,y)dody
34 Linear Transformations

VW = abcdXY = AXY
Assume A is invertible:

XY =A"'VvWwW

34.1 Joint PDF of Linear Transformation
Let Z = g(X,Y). The vector Z is:
Z =AW Z=VW W=XY
The Joint PDF of Z is
fw(A™12)

fz(z) = A |A| = det abed

35 Joint Gaussian RVs

The random variables X, Y are jointly gaussian if:
1

fX,Y z,y) =
() 2no109+/1 — piy

el () e (52) (452) (452

35.1 Joint Standard (Normal) Gaussians
It X N(0,1),Y N(0,1), then

exp(4)

1
fXY(mvy) =
2m\/1 = pxy

1
|

exp(4)

A= 3?2—2,0XY'$y+92)

Fxv(x,y) =g(r) = Cexp {_ﬁ]

202

18



35.2 Independence (m=0,0=1)
If X, Y independent <

COV(X,Y)=0 pxy(z,y)=0

ﬁm%%y)=é;wp(—;@2+y%>

35.3 Independence (m=0)
If X N(0,1),Y N(0,1), then

fxy(z,y) = . 5 €XP (—12(332 + 212)>

2mo 20

35.4 Constant A

If A (exponent of Joint Gaussian) is a constant K

k= [(5) ()]

1
2(1—p2)K:| = constant

P (2,y) = cexp[—

35.5 Major Axis
If X, Y not independent, then the principal axes has

1 2 010
6 = —arctan™! tan %
2 oy — 0%

35.6 Conditional PDF
The conditional PDF of X given Y =y is

f ((ﬂ|y) — fXY(fl'vy) _ 1 exp _1|:xp ﬂ(yim )7m :|2
X fy(y) 2102\/1 — py 2(1— %y 02) xy - 9 )

35.7 Conditional Expectation

g1

EICE—m)(¥ =m)lY] = (y-ma) ELX =¥ = 3] = (y=ma) (pxr 25 = ma) ) = psr 2 (y-ma)?

19



35.8 Covariance

COV(X,Y) = E[(X —m)(Y —ms)] = E[E[(X —m1)(Y —ms)|Y]] = pxy o100

36 Sum of RVs
Let X7, X5, ..., X,, be a sequence of RVs, with

Sn:X1+X2++Xn
36.1 Mean and Variance of Sum of RVs

E[X1 + Xo + +X,] = E[X1] + E[X2] + +E[X,]

n

k=1 j=1k=1
If Xy, Xo, ..., X, independent, then

(Xl + "’Xn) = (Xl) + +(Xn)

36.2 PDF of Sums of Independent RVs
Let X3, X5, ..., X, independent, then

¢s,(w) = E[e*] = B/t XA X0 Bl X Bl Xn] = g, (0)ox,, (w)

fs, =" ox, (w)ox, (w)]

37 Independent Identically Distributed RVs (iid)
If X1, X, ..., X, iid RVs, with
EXj]=m, (Xj)=o02 forj=1,..,n

37.1 Mean and Variance of iid RVs

E[S,] = E[Xi]++E[X,] =n-m;,
(Sp)=mn- (X]) = nai

37.2 PDF of iid RVs

¢Xk(w) = ¢X(w) k=1,...,n%¢ ¢sy (w) = [¢X(w)]n
fs, =71 (85, () =" (ox(w)™)
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38 Sample Mean

38.1 Expected Value and Varianceof Sample Mean
1 n

5 B = = 3B
j=1

= (Sn)/n2

1 n
w2
2

(Mn) =F [(Mn - E[Mn])ﬂ

E[M,)|=E

if X1,,X, iid RVs:
E[M,] =m, < E[S,] =n-m,

0_2

(Sp) =no? < (M,) = .

38.2 Sample Mean Chebyshev Bound
(

PIZ-BlZ] 2 <5

~—

,e>0

0.2

P||M,, — mg| > < —
H m |_6]_n62
2

g
Pl|M, —mg| <e|>1——
My —ma| < 21—

Laws of Large Numbers

39
Weak Law :  lim P[|M,, —m,| <e =1
n—oo
Strong Law : P | lim M, = mz} =1
n— 00
40 Central Limit Theorem

Let Sn = Xl,XQ, ,Xn iid RVs
lim P[Z < Z] = 71 / e /le'
n > /—2

n—roo
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