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Where

e 1(t) is the control input (decision variable)

e y(t) is the output variable (measured with sensors and also the target of
our control)

e 7(t) is the reference signal. We want y(t) — r(t) ast — oo

e c(t) is the tracking error. We want e(t) — 0ast — oo

1 Signals

1.1 Time Constant
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2 Control System Models

2.1 Non-Linear Time Invariant State Space (NN)
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2.2 LTI State Space Models
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2.3 LTI Input/Output Models (I/0O) Models
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3 Equilibrium

For a NN system, a state T € R is an equilibrium if

4 Linearization

T = [i‘la axin]T 5 U
T=x—= U=u—1u g =1y — h(z,u)
Then, the linearization of Z is given by
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5 Matrix Inverses
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6 Final Value Theorem

If lim; o0 f(¢) exists, then

lim f(t) = lim sF(s)

t—o0 s—0

6.1 FVT Existence Condition

A signal f(t) is bounded iff F'(s) has poles with real part < 0 and non-repeated
poles with real part = 0

7 Initial Value Theorem

lim f(¢t) = lim sF(s)
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8 Laplace Transform (LT)

Let f(t) be a function f:R — R. Then
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Where F': C — C. The LT exists if

1. f(t) is Piecewise Continuous (PWC)
2. AM > 0,a € Rs.t. [f(t)] < Me®Vt >0

8.1 Basic Laplace Table

L) =1 L{t} = o
Plgety = o | Her =
L{sin(kt)} = S2+Lk2‘ L{cos(kt)} = =i

{sinh(kt)} = =z

Z{cosh(kt)} = ==



8.2 First Translation Theorem

L{e" f(t)}(s) = L{f()}(s —a) = F(s —a)

8.3 Second Translation Theorem
L (- a)ult —a)} = e F(s)
where u is the unit step function and a > 0.
8.4 Transforms of Derivatives

If f,f,..f=1 are cts on [0,00) and are of expon. order, and if f(")(t) is
piecewise cts on [0, 00), then

LU0} = 5 F(s) = 87 F(0) = 5" F0) — = £770(0)

L{f" ()} = s*F(s) = sf(0) = £(0)

8.5 Derivatives of Transforms
If £{f(t)} = F(s) and n=1,2,3,..., then

LT} = ()" R(s)

8.6 Transform of Integrals
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9 Inverse Laplace Transform

9.1 Basic Inverse Laplace Transforms
e iy =1 271} = 6(t)
2{L}=e e k=
¢! {%} —sin(kt) | £ {ﬁ} — cos(kt)
%! {ﬁ} = sinh(kt) | 27 {ﬁ} = cosh(kt)

9.2 Inverse Laplace Transform Formula

o+i00 n
f(t) = ! / F(z)e*'dt = Res(e* F(s), 1)
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9.3 Residue Calculation

In general, the residue of a function F'(s) at a pole can be calculated with

Res(F(s), 5) = —— Tim S (s — s9)"F(s)

n— 1) s—sp ds™—1
Where n > 1 is the order of the function F(s).

10 Model Conversions

10.1 Input/Output to Transfer Function
For an IO model of the form

d™y dn 1y d™u
dtin+6Ln_1W+"'+a0y:bmdt7m+"'+b0u
with y(0) = ¢(0) = §(0) = - -- = 0, the equivalent Transfer Function model

is given by
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10.2 Transfer Function to Input/Output

For a Transfer Function model of the form,

Y(s) = G(s)U(s)
the equivalent Input/Output model is given by

o0 = LY} = £HEEU )
y(t) = gt) * u(t) = / ot — Tyu(r)dr

10.3 State Space to Transfer Function

For a State Space model of the form,

& = Az + Bu
y=Cx+ Du
the equivalent Transfer Function model is given by

Y (s) = [C(sI — A)"'B + D]U(s)
G(S)=C(sI —A)"'B+D

10.3.1 Notes
The values of S € C for which sI — A is not invertible are poles of G(s)



10.4 Transfer Function to State Space

1
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11 Poles

1st Order: (s +p;) 2nd Order: [(s + )% 4 w?]

11.1 Pole Poly Representations
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12 Transient Performance

12.1 2nd Order Systems
12.1.1 Settling Time
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12.1.2 Percent Overshoot and Peak Time
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12.1.3 Rise Time
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12.1.4 Effect of Additional Pole/Zeroes

Additional Pole/Zeroes in LHP have little effect, as long as Re{P} << ¢ —
Re{P} < 10- 0. Zeroes in RHP (Nonminimum Phase) and change sign of

y(o0).
12.2 Higher Order (Dominant Pole)
12.2.1 Phase Margin

2¢

=202 + /1 +4¢4
PM =~ 100¢ for0< (¢ <0.6

PM = tan~!

12.2.2 Bandwidth
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12.2.3 Crossover Frequency
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We = WBW ~ 0635WBW
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13 Stability

13.1 Internal Stability

A system is Internally Stable if Vx, € R the solution of & = Az with 1.C
x(0) = o is bounded.

13.2 Asymptotic Stability (AS)

A system is asymptotically stable if Vz, € R with I.C. 2(0) = xq, 2(t) = 0
as t — oo.

. AdJ(SI — A)Qfo
=Azr X(8)=—F——"—"—
* v () det(sI — A)

AS if all poles (all eigenvalues) of X (s) in OLHP.



13.3 Input/Output Stability (BIBO)

A system is BIBO Stable if for any bounded input z(t), the output y(¢) is also
bounded.

Y(s) = G(s)U(s) Gls) = OAd(J;l(eiis; ffﬁ .

BIBO Stable if all poles of G(s) in OLHP.

13.4 Routh Array

# of sign variations = # of roots with real part < 0
1 Ay 1 Ay
br=——L det n=2| py= =L det n—4
n-t Gp—1 Qanp-—3 n-l Ap—-1 Qp—5
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14 Basic (Standard) Control Problem
1 —
“Trea™ Ty

C 1
- - D
V) = g9+ P
Closed Loop System BIBO Stable if G4 BIBO Stable.

G
CGD(S):ER~R+ED’D

E(s)

14.1 G4 Stability

1. No illegal pole/zero cancellations in CG
2. Zeroes of 1 + CG in OLHP

14.2 Type

A TF has type [ if it has exactly [ poles at 0. Suppose R(s) has type K. If CG
has type K — 1, then e(co) is nonzero, finite. If CG has type K — 2, then e(oco)
is unbounded.

15 Internal Model Principle (IMP)

R(s), D(s) rational, strictly proper. Then e(¢f) — 0 iff 1. G4 BIBO Stable 2.
Poles of R are also poles of CG (CG type Kg) 3. Poles of D are also poles of
C (C type Kp)



16 Controllers

16.1 PD Controllers
Not physically implementable (unless ¢(t) sensor).

Cs)=K(T;-s+1) <+ u(t)zKe(t)—F{(Tdé(t)
Ta

Use to increase the PM (by a max of 7/2 by placing before the w,

Physical System

Figure 1: Blue arrows represent conversions from a physical model to a mathe-
matical model. Green arrows represent unique conversions between mathemat-
ical models of systems. Red arrows represent non-unique conversions between
mathematical models.



