1 Geometric Optics
1.1 Optical Path Length (OPL)

B
OPL:/ n(s)-ds

A
1.2 Interfaces
Reflection 0; =0,
Refraction (Snell’s Law) | n;sin(6;) = n;sin(6;)

1.3 Fermat’s Principle

Light traverses shortest OPL route, — =0

1.4 Optical Imaging Systems
1.5 Spherical Refractive Surface

1.5.1 Paraxial Approximation
So _ Si
ni(So+R)  n¢(S;i—R)
1.5.2 Gaussian Formula
nionp_m—ng

So  S; R

1.6 ThinLens
1.6.1 Lensmakers Formula

1 1)\ m
Ri Ry m

1 (11

= -1 -

f (e )( (Rl Ry )

2 Wave Optics 1

Light is a harmonic (single-frequency, monochro-
matic) wave.

2.1 Maxwell Equations

Integral Form Differential Form

JB
$oE-dl = aa VxE = =
$oH-dl = ( Dt])=Tone | VxH=22+]
$s D- ds—ﬂjpdv Q V-D= p
$sB-ds=0 V-B=0

2.2 Materials
Source free =0
Linear |P| |E| {M o |H|
Isotropic €,y scalars

As aresult,

D =¢epe,E=€E B=popuH=pH

2.3 Harmonic Plane Waves
E(r,t) = Egcos(k - P+ wt + )

F+wt+ )]

E areal quantity (take real part of E(r,t)
2.4 Wave Properties
Temporal period and frequency:

E(r,t)=E exp[i(z

21 @
T:— = —
w v 27

Spatial period and frequency:

27 |k|
A=— =
e
Speed of propagation:
spatial period A )

1
=7
Perpendicularity (E, H, k right hand triplet)

"~ temporal period ~ 2m/w  |k|

k1E kL1H  kxE=pwH
If E, H in phase,
IEL_ |1
|H] €
2.5 Other Properties
w 1 —
k Hoeo
w w c A
k = — —_ = = - = —
c " k v n T
2.6 Poynting Vector & Power
S=ExH

Hard to calculate S, since only (time-averaged)
power can be measured (S is power density)

2.7 Irradiance
I =(S)T =(|ExH|)T —(EoHocos k-r—wt+Q))r
7= oHo \/7E2 \/ﬁ 2

I« |E)?

2.8 Polarization
Prop in 2, Lin. pol in p:

E(r,t) = Eogexpli(kz - wt + )]
Lin. pol in x,p:

E(r,t) = (ExoX + Eyo9) exp[i(kz — wt + )]

Circ. pol:
E(r,1) = (Eo% + Ege' 2 ) expli(kz - wt + )]

Ellip. pol:
E(r,t) = (Exo% + Eyoe'P9) expli(kz — wt + §)]

In general:

E(r,t) = (Expe ¢‘x+Eyoe (Pyy Jexpli(kz — wt + ¢)]

* Lin: ¢y — px =mm
s Circ: py — Py = 7 +mm
* Ellip: Ex # Eyo and ¢y — ¢y # mm
* Ellip: Exp = Eyo and ¢y — Py = mm +70/2, mm

2.9 Jones Vectors
elPx
~[rb |- [paote|
2.9.1 Jones Vector Properties

e Normalized: |[J|=1,J*-] =1
* J1,]» orthogonal if J7 -] =0
* Linearity: ] = aJ1 + ]

2.9.2 Jones Vector Examples
Lin pol wrt x:

I=[3]
Lin pol O degrees wrt x:
0
J= (5636
Left hand circ pol:
1
j=—]|1
L
Right hand circ pol:
1
J=—|1
L)
2.10 Rotation of Polarization
’_ _ | cosp siny
] =R@)] = [—Sinll) cosp

Circ polarizations are rotation-invariant (although
have an added phase)

2.11 Malus’s Law
Linearly polarized light:

After passing through a lin polarizer:

1 [e
Loyt = 5\/;E§ut = cos? 01,

Cirularly polarized light:

Iin=.|—E?
m \/; in

After passing through a lin polarizer:

1 2 1
Tout = E\/;Eaut ZIin

Elliptically polarized light:

1 € 2 2
5\/;(Ex+Ey)

After passing through a lin polarizer:

lin =

cos? OE2 +sin? QEyZ

E} +E}

Tout = Iin

2.12 Jones Matrices
Jo=T-Ji=[2 b

2.12.1 Eigenvectors
T]=a

Eigenvectors of a 2x2 T matrix are the independent
polarization states. Light with polarization state
corresponding to eigenvector goes through T un-
changed.

2.12.2 Jones Matrix Examples
TA @ O wrt x axis:

sin‘ 0

_ [ cos? 0
sin 0 cos O

sin O cos 6]

2.13 Wave Plates
_[eis 0
I= [ 0 e”p

Where Ap = ¢ps— ¢

f] = elr [eiécp 0]

* QWP: A¢p = mm+1/2

e HWP: A¢p =2mm+ 1



2.14 Reflection and Refraction at Interfaces

TE-case TM-case

Incident:

E, =(-E, cos3 ~ £, sin 3 )explilk,x + k,y — @t + 4|
Reflected:

E, =(-E, cosf&+E,sin0,§)explilk,x +k,y-a,t+4,)|
Transmitted:

E,=(-E, cos0% ~ E, sinff explill,x + £,y —a+4))

Incident:

E =E,expllkx +k,y-or+4 )i
Reflected:

E =L, explilt.x+k,y-or+4 B
Transmitted:

E, = E, explilk,x+k,y-wt+4 )i

2.14.1 Phase Matching at Boundary
Wj =Wy =W =W

© . © . © .
kixy =kpx = kix — ?nism@- = ?n,sm6r = ?ntsmet

Since n; = n,,
0; =0, - n;sin0; =n,sin0,

And also
bi=¢r=¢r=¢
2.15 Fresnel Coefficients
E, n;cos 0; —nycos O
"TE=\E; = .
ilrp MicosO;+n;cosOy
¢ 2n; cos 0;
tTE = I Rt it
ilrp MicosO;+ngcosOy

E, —nscos0; —n;cosO;
rTM = E— =
ilrm  mecosOj+mnjcosOy
; [ E; _ 2n;cos 0;
™ =\E; M MtcosO; +njcosOy

2.16 Reflections

Internal reflections: n; < n; External reflections:

n; >ng

2.17 Reflectance and Transmittance
P, I,AcosO; »

- E " I;Acos6;

T = 5 _ [tAcosO;  nycosOy 12

P, 1;Acos0;

Energy conservation:

n; cos 0;

R+T=1

2.17.1 Normalincidence
If6; =0,

n; —ng
n; +ng

2
nj — 1y
ITE=TTM = —>RTE=RTM=(7)

n; +ng

Plane of incidence is not unique. No polarization
dependence

2.17.2 Brewster’s Angle
At Brewster’s angle (6,), TM polarized light does
not reflect (r7pr = 0).

nycosOip =njcosOyp njsinbjp =n;sinbyy

ny

tan6;, = —
lp ni

e

91}7 + Qtp = 5

2.18 Total Internal Reflectance
Two conditions:

* n;>n;
e 0;>0,
2.19 Critical Angle

Incident angle for internal reflection, when 6; = %:

1M

O, =sin"
c
1;

2.20 Evanescent Waves

The transmitted wave in TIR case is evanscent:

w . [ON
|kl = —nyp — ki = kixy = kjsin@; = —n;sin0;
c c

w n;sin@; \>
key = k2 —k2 = #i Dy || B2 ) —1
ty t ~ Fix P nt
13 ( n;jsin 0; )2 .

=—n
ﬁ c ! ny

Ey = EqoeP? expli(....)]

2.21 Penetration Depths
Field/amplitude penetration depth:

Ey=)=Ew=0)

Intensity penetration depth

1 1
:ﬁ):gl(?zo)

2.22 Complex Fresnel Coefficients
Fresnel coeffs can be applied to TIR:

I(y

rrg = e PTE rrym = e PT™
. g . 2
_1| ne/(nisinBi/ny)
=—2tan _
e ( n; cos 0;

$T™ = —2tan”! [ni (nisin 0i/n )2 ]

nscos 6;

3 Wave Optics 2

3.1 Interference
Given two waves

Eq :Elocos(k_i '?7w1t+¢1)
E, = EZOCOS(kZ - w1t+<f}1)

1 e
I :<E1xH1>:5\/;|E10|2

1 Je
Iy =(Ey xHj) = E\/;|E20|2

Superposition E = Eq + E» yields:

I:\/Eill +12+2\/§<E] 'E2>
H M

interference term: 2\/%(151 -Ep)

3.1.1 Interference Term

2\/€(E1 "Ez) =
H
\/5(510'520)@05[%1 —kp)-r—(w1—w)t+(P1—P2)])

3.2 Spherical Interference
In spherical coordinates (7,6, ¢):

\/E (’l - @)@os[(km kara)~(@1—w2) (1 —2)

n )

3.3 Visualization of Interference

l(|
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The red lines represent the equal phase lines of 2m, and the blue lines are (2m+1) 7 phase lines.
When red lines meet red lines (or blue lines meet blue lines), the two waves are in phase, and the

resulting intensity is the highest (the bright fringe in the background). When red lines meet blue
lines, the two waves are 1 out-of-phase, and the resulting intensity is the lowest (dark fringe).

For the plane waves (left figure), the two k vectors are in the same co-ordinate system.

For the spherical waves (right figure), the two K vectors (or ¥ vectors) for a given point of interest,
P, are in separate co-ordinate systems. k and r are therefore always collinear. Hence, k-r=kr

3.4 Conditions for Non-interference
1. orthogonal polarization: E1, L Ej,

2. w1 # wy s.t. time avg of fast varying cos is 0

3. ¢1 — ¢, varies with time randomly

3.5 Conditions for Interference
1. w1 =Wy
2. Ejpnot L Ep,

3. ¢1 — ¢ not time varying

3.6 Relative Phase and OPL Diff
I=L+1+ 2\/[]12C085

where 0 is the relative phase between two interfe-
ring waves

0=(k1 —kp)-r+(Pp1—P2)

0= (r1—r2)+(P1-¢2)
3.7 Fringes
e bright: 0 =2mn —>1=11 +1p+ 211 ]

e dark: 6= 2m+ 1)t >1=01 +I, =211 I

plane waves

plane waves

3.8 Equal Intensity Interference
L= =1I

I=11 +11 + 24/I11; cos 6 = 2[1(1 + cos d) =
o
-
1cos”(

3.9 Interference of two point sources

r;

Sscreen

AOPL = ) —1
! AOPL -
5=2m +(p1—g) = 2m 2
A Ao
Small angle approx: 1, — 1] ~ a0 = a%

: ay
0=2n—"—
oL

* bright: 0 = 271% =2mmn

a

o dark: 6 =27 /\yodf =2mm+ T

or
* bright: y;; = m%

1

o dark: yyi = (m+ 7) Aok

Ta
Fringe spacing:

AoL
AVfringe = ——



3.10 Coherence
For two waves to have long-lasting interference,
they must have a fixed phase relationship:

@1 — ¢ must not be time varying

3.11 Practical Light Sources

Practical sources are not monochromatic or point
sources

3.12 Temporal Coherence
7. is the average duration of wave trains. I.: longi-
tudinal coherence length.

l.=ct,

Long-lasting interference cannot be observed if
AOPL > I.. Coherence condition: AOPL < I,

3.13 Spatial Coherence
I;: spatial coherence length

L= i = (11-53)
0, s

6, being the angle subtended by the source, viewed from the point of interest (see below).
For circular sources,

[,=1222=122 (11-54)
o,

A _
v A

3.15 Michelson Interferometer
M, M,

AOPL = 2d cos6
Phase difference is thus:

47td cos O
=47

0=k-AOPL+m 1

Center of a bright fringe occurs at
o p o1
Opt,, =2mm  or 2dcosOp; = (m— 5)/\

3.15.1 Michelson Fringe Radii
The pth bright fringe in center (6 = 0):

1
Zd:(P—E)/\

The mth bright fringe from center m = p — N:
3.17 Thin-Film Interference

1
2dcosOpy, = (m— 5)/\

Small incident angles:

cos~1——

2

- 2d—(m- 1)

Y
n ‘ d
bt,, d ! 6,

(p—m)A NA R
Ot N NI

Q)

Radii of bright fri : 2ned
aci1 of Bright fringes AOPL = L 2n1dtan 0;sin 6;
cos 0,
tot,, = [ Obt,, = / % AOPL =2nydcos6;
2n¢dcosO
Where f is the focal length of the lens S5 = ZT(w +
3.15.2 Fringe Separation for Michelson Ao

bright fringes appear at 6 = 2mmn
NA
Aty = fObty+1 = Oty ) = f\/;(m_\/ﬁ)

Fringe spacing is not uniform (decreases from cen-
ter to edge). Spacing between N and N + 1 is pro-

1
2nrdcosOy = (m—=-)A
nydcos®; = (m 2) 0
3.18 Fabry Perot Interference

2ned
0=2m
portional to A, inversely proportional to Vd Ao
3.15.3 Fringe Distortion
After a path length of Ad, the fringe distortion is

cos 0y

on.
AmA =2Ad

3.16 Newton’s Rings

Let d be the thickness of the space between
the two dielectrics, the relationship between ,. ,
x,dand R is:

For a small d, we can ignore the 2" order
term 42, and write:

x=+2Rd (12-13)

Furthermore, ignoring the small angle tilt in
k\\}_ the reflected beams due to refraction, 2n,d is
LSS the AOPL between the two interfering beams.

" 14|
Black Surface a t

May be additional 7t phase between two beams. As-
sume ny <ny, ny <np, =

Small angle approx: y

AOPL = 2d

0=2d= 27emd cosO+ 1
bright fringes appear at 0 = 2mmn
3.16.1 Newtons Rings Fringe Radii
radius of bright fringes: r=-r

3.18.1 Fresnel Coefficients at thin-film
Drop TE, TM subscript at near incidence conditi-

X+R-df =R (1212 r r r r

3.19 Coefficient of Finesse

_ 4R
~(1-R)?
3.20 Transmittance of Fabry Perot
1
Trp=——m—5—
B ¥ Fsin2(5/2)
2n¢dcosO
5= o LI
Ao

3.21 Reflectance of Thin-Film
Rrp=1-Tpp

3.22 Airy Function
When 6 = (2m+ 1)

1
TFP,min = m
When 6 = 2mn
TFP,max =1
3.23 Finesse

" Fringe Spacing

~ FWHM Fringe Width at Resonance
FWHM fringe width = Adrwam

2 .

F = 1250

| B
‘ {«- A3 ‘ |

We shall proceed to find A8gyyy, using Eq
| \ (12-39).

L
Zmr 2m D

3.23.1 Full Width at Half Maximum
Fringe width when transmittance drops to half of

peak value
_ 27 _ nVF
T AopwHM 2
3.24 Resolving Power
AARp = 2nfdsin O, AOpwHM/Mm

R= 20
AAgp

Since
andcos 0;
P R
Ao
Ao
A =
ARp T

For the FP, resolving power is defined as:

Ao
- - mF
Agp

2n+d
= f F
Ao

0=2

R =mF




3.25

1,

Free Spectral Range

mth order bright fringe of A; overlaps with m + 1
bright fringe of A,.

2nfdcosOppylr=p, = my

2n§d cos Oy(mi1)la=a, = (m+ 1)1,

FSR is the largest range in a given order that does-
nt overlap same range in another order. Also the
largest unambiguous measurement range.

A
AApsr=A1-A2 = ;2

FSR range reduces as m increases

AA %
FSR~ and
AVFSR A)\FSR /\0 c/v
v Ao 2nfd 2nfd
Cc
Avpsr = 2nsd

4 Wave Optics 3
4.1 Fourier Transforms

t%%/fmfmwt

f(x,y)H/f(x,y)gfjkxxe_]‘kyydt

4.2 Diffraction

E field distribution
at the aperture

Diffraction Theory » E field distribution

at the screen

Define
¢ E,: field distribution at aperture
¢ E;: field distribution at screen

+00 E X,, )
Ei(xj,yi) = // Cwemd%d%

Where

 r: distance between point source (x,,7v,) and
point on screen

» C:Proportionality constant

4.2.1 Approximations for r
In rect coordinates,

r= 2+ (xi = x0)2 + 3 ~3o)?

Amplitude approx:

Phase approx:

r=zj, |1+
1 22
1
2,.2
XY XiXo+YiYe | X3+92
rxzi+ - +
2z; Z; 2z;
4.3 Fraunhofer Region (Far Field)
. 2 . 2
X;— %)%+ (v; —
r=2z 1+( i—Xo) 2(}}1 Vo)
z4
1
2,.2
rzzi+xi YU XiXo ¥ YiYo
2z; Z
4.4 Fresnel Region (Near Field)
. 2 . 2
- + —
r=z 1+ (xi = X,) 2(3’1 Vo)
o
1
2 2 2 2
rzzi+xi+yi _XiXo+¥iYo Yot Yo
2z; zi 2z;

4.5 Far Field Condition
When can last term in r approx be negligible?
kM << 27
2z;
or ,
X0t %
21

w/xg' +yg' <<AJAz;

4.5.1 Far Field Compensation (with Lens)
Another way to compensate for quadratic term in
far-field condition is to use a lens

z; >>k

Consider a plane wave incident on a convex lens
and focuses to the point F. As the incident wave is
a plane wave, the phase anywhere on the
transverse plane just before the lens (indicated by
the red line) is the same. From geometric optics,
we also know that the OPL for the ray going from
A to F is the same as the OPL from A, to F.

——

Therefore, the phases for all the rays at F are the same, which we label as ¢. Let’ s calculate
the phases on the transverse plane after the lens (blue line) at B,(0,0), ¢z, and B(x,, »,), ¢s:

Since OPLy . = f and OPLy, =~/ f> +x. +y. = f+(xj +yf)/2f, therefore,
@5, =0 —kOPLy . and @, =@, —k OPL,,. The phase difference being

By~ s, =—HOPLy, ~OPL, , )=k (3 + 3 )/2f E)

4.6 Spatial Fourier Transform

3 o,yu)exp{,,{z +x,2+yl ""‘”””deﬂdya

Zz
N “y

¢ HE e exr{—ﬂ{*wr ¥, } ,

=—e
Z,
2D spatial Fourier Transform

Exy UC

(13-8)

The integral above is a 2D spatial Fourier Transform with

x;, _ksin@
{ f”_27r_ﬂ.z 2z

f= k, _y _ksing
’ 27[ ﬂz 2z

(13-9)

4.7 Rectangle Function
(1) Rectangle function

Ti(x)

(13-10)

H(X)E{l [x=1/2

0 x>1/2

B2 v x

f{]’[(x)} = Smf;f) =sincf  (13-11)
Rectangle function with scaling:
T(v/a)

F {1‘[(5)} = asinc(af)

(13-12)

al
H

4.8 Circle Function
(2) Circle function

cire(p)

(13-13)

(13-14)

J, is the Bessel function of the first kind* of order 1.

Footnote:

1. The left plot shows the various orders of the Bessel
functions of the first kind. They are also called the
cylindrical harmonics. Any arbitrary function in the
cylindrical coordinates can be expressed as the linear
superposition of thesc harmonics. To find the
derivation of Eq (13-14), you can go to:

olfram.com/Cyli html
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4.9 Delta Function

(3) Delta function

‘ 8(x)
0 x

lim J“ ‘S(x)c=1

(13-15)

F{a(x)}=1 (13-16)
Delta function with a shift:
8(x-a)
! F{o(x-a)}=c" (13-17)
o e =
8 8(x-a) gle-a) f{g(x)@é(x—a)}
® ! = _ i2afa

= Fle(x)} a3

0l X ol a  x 0 a  x

4.10 Impulse Train

Also called Shah function

(4) Impulse Train Function (Shah function)

W(x) o
1 w(x)= Y 8(x—n) (13-19)
Ry TR R R FluE)-w(y) 320
Shah function with scaling:
. W) /a Lu(ja)zniﬁ(xfna) 13-21)
RN R wixa)
3a 2a -a 01 a 2a ¥ F P (@) a2

4.11 Diffraction Limit

Focal point cannot physically be a singularity. Finite
wavelength size. Focal spot size 2w,:

1.22)f

2w, ~
Wo D

4.11.1 Angular Resolution

Resolving power of:

1.224
D

Orp =

4.12 Multi-Slit Diffraction
N slits, width b separation a

Yo
b
—
- 3 § x| - N N
Xo
—
a

4.13 Diffraction Grating

a(sin @, —sin6;) = mA
4.13.1 Resolving Power
Ao
= = N
AMrp
4.13.2 Free Spectral Range
if A; ~ Ayp:
A
AL =—
FSR=
else: A
Adpsg = =2
m



5 Single-Slit Far Field Diffraction

Example 13-1: Find and plot the far-field diffraction pattern of a single rectangular slit of

dimension bxi.
Aperture function:  E (x,,, )= H(%)H(y?) (13-23)

Far-field E field distribution:

E;(x,3:) % F{E, (x..3.)} .
"'F FHE ()= F {H(%)H(%)}= blsinc(bf, )sinc(lf,) (13-25)

Far-field Intensity distribution:

f1=£’f = (1 3-24)
Azt

. . . bx, | . by,
2 2 2 i 2 i _
I(x,,y,)oc EX(x,, y,)oc sinc (bfl)smcz(lfy}fx;’f;i =sinc EJsmc (ZJ (13-26)
One can also write the above expression in terms of 6 and o, using (13-9):
,( kbsin @ sinc? klsing (13-27)
2z 2

1,(6,¢) sincz(bfx)sincz(lfv]f ksio |, _isnp = SINC

2z 2z

The far-field intensity plots for a single rectangle slit are given below:

A

I
7 D Y R V RV
3 b b b b i
3] 24 1 i 24 ¥ )
-= = = = = = sinf
b b b b b b
JlI
A=
*T' 0 % Yi
_2A ’IL sin
I N ¢



6 Double-Slit Far Field Diffraction

Example 13-2: Find and plot the far-field diffraction pattern of a double slit aperture as
shown.

Aperture function:

E(x,y,)= H(%)H(Jﬂ ®|:5(x+§) +5[x— %ﬂ (13-28)

Far-field E field distribution:

Ef(xfsy,-)“f{Eo(xo,yo)}f_xi - (13-29)
Taa g
- %o |1 2o a _a
f{Eg(xg,y,,)}—f{H( 5 )H( ; )@[5(16+ 2)+6(x 2)]}
=bl sinc(bﬁ)sinc(lfy)(e"’m + e'i”fxa) = 2blcos(mf,a)sinc bf, )sinc(if,) (13-30)
Far-field Intensity distribution:
I(x,,y,) oc EX(x,,y,)oc cos®(z f,aJsinc’ (bf, )sinc” (lfy]f 5,
a2
=cos’ i) sinc® b, sinc’ IL (13-31)
Az, Az, Az,

Written in terms of 6 and ¢:

1,(6,0) = cos? (x f,a)sinc® (bf, Jsine*(, | _ssno , _

2z’

z(kasinl?) ) {kbsin@) ) z(klsingp)
=cos sinc sine’| ——
2 2 2

ksinp
2z

(13-32)



7 Circular Aperture Diffraction

The far-field intensity plots for a double-slit aperture are:

A I
It \\'\7 _ sinc’ envelope due to finite slit size
cos’ fringe due to /\ ‘\ |\
double-slit inre:ference\h “l \‘l
M| [ |1\
M H “ || M
o PARELE N |
24z Az, Az, Az~-34z X;
bt gt & -—40 jund B Gl & i
b b a 2a | 2a
u| a| a4 |7 o
b b a 2a " 2a
I

22z, ‘
B l}/ 0 \[ A Vi
24 i ;
5 - sing

Example 13-3: Find and plot the far-field diffraction pattern of a circular aperture as shown.

P For an aperture of radius a, the aperture function
p is expressed as:

E (p, )= circ(&] (13-33)
a

From (13-14), the far-field becomes:

E.v(Pf)“f{Ea(Pa)}=fiJl(2ﬂfpa) (13-34)

P
. ksinf
where fo= P _ (13-35)
Az, 2z
Sometimes E; is expressed in terms of the angular distance 6,
2r

E(6)c mJ (kasin ) (13-36)

sin



The far-field intensity becomes:

2 . 2
L(H)ocEf(@)oc( 27 J 7> (ka'sin 9):4::%{@} (13-37)
ksin@ kasin@

The first null of 7, in Eq (13-37) occurs when

kasin@=3.83 = sind=1.221/2a (13-38)
oo 27P4=383 or p =1224z/2a (13-39)
8 Airy Disk
The normalized far-field intensity is plotted here:
1
1% 0 12% P
2a 2a ¢
y) A .
_1'225 1,225 sinf

This intensity pattern is also known as the Airy Disk.



