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0.1

1 Preliminaries

Architecture: timing independent function of computerMicroArchitecture:
Implementation techniques to improve perf. Implicit Parallelism: increase
ILP, pipelining, caching Explicit Parallelism: Data parallelism, TLP ISA:
SW/HW Interface

2 Performance Metrics

2.1 Latency

Latency (execution time) is the time required to finish some fixed task. Proces-
sor A is X times faster than B:

Lat(P,A) = Lat(P,B)/X
Processor A is X% faster than B:

Lat(P,A) = Lat(P,B)/

(
1 +

X

100

)
2.1.1 Adding Latencies

Lat(P1 + P2, A) = Lat(P1, A) + Lat(P2, A)

2.2 Throughput (Bandwidth)

Proc. A has X times TP relative to B:
TP(P,A) = TP(P,B)/X

Proc. A has X% the TP relative to B:

TP(P,A) = TP(P,B)/

(
1 +

X

100

)
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2.2.1 Adding Throughputs

TP(P1 + P2, A) =
2

1
TP(P1,A) +

1
TP(P2,A)

2.3 Speedup

Speedup =
TR,i

Ti
=

Told

Tnew

• TR,i execution time on reference machine

• Ti execution time on evaluated machine

2.4 Slowdown

Slowdown = F · (Rexe) + (1− F ) · 1

• F fraction of instructions that experience slowdown

• Rexe factor of how much slower the F instructions are

2.5 Execution Time

Texe = Lat(P ) = IC × CPI × Tc

• IC dynamic instruction count

• CPI is # of cycles per instr

• Tc is the seconds per cycle (clock period)

2.5.1 CPI (Cycles per Instr) & IPC

CPI =
Texe

IC × Tc
IPC =

1

CPI
For 5-stage processor,

CPI = 1 +
∑

fstall · cstall

• fstall is the frequency of instructions that stall

• cstall is the # of stall cycles corresponding to instr with fstall frequency

3 Analyzing Performance

3.0.1 Ratio of Means

RoM =

∑
i=1,...,N TR,i∑
i=1,...,N Ti
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• si is the speedup

• TR,i exec time on reference

• Ti exec time on evaluated

3.1 Arithmetic Average

For units proportional to time (e.g. latency)

L̄ =
1

N
×

N∑
i=1

Ti =
1

N
×

∑
P=1,...,N

Lat(P )

Where L̄ is the average latency of all programs Ti, ..., TN

3.2 Harmonic Average

For units inversely proportional to time

T̄ =
N∑

P=1,...,N
1

TP(P )

Where T̄ is the average throughput

3.3 Geometric Average

For unitless quantities (e.g. speedup)

N

√
ΠP=1,...,NSpdUp(P ) =

N
√

SpdUp(P1) ∗ SpdUp(P2) ∗ ... ∗ SpdUp(PN )

4 Amdahl’s Law

Assume an enhancement E, which speeds up fraction F of computation by
factor S:

Texe(w/ E) = Texe(w/o E)×
[
(1− F ) +

F

S

]
SpdUp(E) =

Texe(w/o E)

Texe(with E)
=

1

(1− F ) + F
S

4.1 Parallel Case

Let P be number of cores, and F fraction of code that can be parallelized on P :

Sp =
T1

Tp
=

1

1− F + F
P

=
P

F + P (1− F )
<

1

1− F
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5 ISA

5.1 ISA Condition Codes

conditional execution (e.g. for branches) is set by condition codes, which differ
for various ISA’s. A typical condition code register: Z: Zero, C: Carry, V :
Overflow, X: Extend, N : Negative

6 Pipelining

The classic 5 stage pipeline has

• Fetch: Fetch instruction from PC

• Decode: Read reg, find instr type

• eXecute: Execute instr (ALU)

• Memory: Handle memory instr

• Writeback: write completed instr result to register file

7 Dependencies and Hazards

type T/F Solution
RAW T stall, bypassing, reorder
LTU T stall + bypass
WAW F register rename
WAR F register rename
struct T stall, better design
ctrl T stall, flush F/D

7.1 Bypassing

bypass elements in 5 stage proc:
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7.1.1 MX

beginning of M to input of X
XM.rd == DX.rs1

7.1.2 WX

beginning of W to input of X
MW.rd == DX.rs1

7.1.3 WM

beginning of W to input of M

7.2 LTU

even with bypassing, LTU hazard exists for instr with dist = 1

stall = (DX.op == LW )&&[(FD.rs1 ==
DX.rd)||(FD.rs2 == DX.rd)&&FD.op! = SW )]

8 Dynamic Branch Prediction

Compiler (Static): ∼ 85%. HW: ∼ 95%

8.1 Direction Prediction

Predict T/NT using BPB (conditional B).

8.1.1 1bit Predictor

1 bit (T/NT) - pred same way as last time.

8.1.2 2bit Saturating Counter

2 bits (sT,wT,wNT,sNT) - branch pattern has some correlation.

8.2 History-Based Methods (BHR)

GA = Global BHR, PA = Private BHR
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8.2.1 GAg
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8.2.2 GAp

8.2.3 PAg
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8.2.4 PAp

8.3 Target Prediction

The Branch Target Buffer (BTB) acts like a small cache

BTB handles

• direct control branches, jumps, calls

BTB does not handle

• indirect control branches, jumps, calls

• indirect control jump (switch)

• returns

8.3.1 Returns

store return address on Return Address Stack (RAS)
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9 Exceptions

Interrupts, exceptions, page faults, illegal op

9.1 Handling Exceptions

Save processor state, restart execution. Instr in flight become NOP

10 Dynamic Scheduling

aka out-of-order execution. benefits:

1. reduce RAW stalls

2. increase pipeline, FU utilization

3. increase ILP
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11 Tomasulo’s Algorithm

Features: register renaming using tag’s (avoid WAW, WAR). Reservation
Station to buffer instructions (instr q). Common Data Bus (CDB) to broad-
cast completed instr to RS’s.

11.1 Processor Structure in Tomasulo

• Fetch: Fetch instruction from PC

• Dispatch: Check for structural hazard (RS full), rename output reg to
allocated RS, check input registers ready

• Issue: Waits for RAW and Struct. hazards. If reg ready, send to X

• eXecute: Execute instr (ALU)

• Memory: Handle memory instr

• Writeback: Broadcast on CDB (wait for structural hazard), clear RS entry
and tag on tag match

11.2 Register Renaming

Storage locations referred to by RS# tags
Tag == 0− > val in reg table

Tag! = 0− > val not rdy (being computed)

12 Precise State

Speculation requires ability to abort and restart. Tomasulo has ooo completion,
hard to restore precise instr state.

12.1 Re-Order Buffer (ROB)

Register writes executed in dispatch order. ROB stores completion flag of instr,
new and old register mapping. Enables in-order dispatch, ooo execution, in-
order completion.

12.2 Load/Store Queue (LSQ)

Completed stores write to LSQ. LSQ writes to memory when store retires. Loads
access LSQ and data cache in parallel if ∃ older store with matching addr.
Forward LSQ value if exists.
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13 MIPS R10K

13.1 Physical Register File

MIPS R10K has Physical Registers (PR) instead of named architectural reg-
isters. Conceptually, big bank of physical registers which can be associated via
the ROB.

13.2 R10K Structures

• ROB: Told PR prev. mapped to this instr, T PR corresponding to this
instr’s logical output

• RS: T PR, S1, S2 PR tags corresponding to instr inputs, rdy ready bit

• Map Table: T PR, rdy ready bit

• Free List: PR#

13.3 Processor Structure

• Fetch: Fetch instruction from PC

• Dispatch: In-order, Check for structural hazard (RS, ROB, PR#), Allo-
cate RS + ROB entries, new PR#, Read PR tags for input regs (store in
RS S1, S2)

• Issue: Waits for RAW and struct. hazards. If reg ready, send to X

• eXecute: Execute instr (ALU). Can free RS entry at end of X since RS#
is not a tag

• Complete: Write destination PR. Set inst output reg ready in map table
and RS

• Retire: If instr at ROB head not complete, stall. Handle exceptions. If
store, right value from LSQ into data. Free Told, ROB and LSQ entries.

14 Recovering from Misspeculation

Two ways to restore precise state

14.1 Serial Rollback using T, Told

Slow (serial), but simple and cheap (hardware)

14.2 Single Cycle Restore Checkpoint

Fast (single cycle), but very expensive

14.3 Hybrid

Checkpoint low confidence branches. Serial recovery for page faults.
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15 Caches

15.1 Cache Organization

baddr = btag + bindex + boffset
Blocks = C/BS #Sets = #Blocks/#Ways

where C = capacity, BS = block size
btag = baddr − log2(#Sets)− log2(BS)

15.1.1 Tag Overhead

C = Data+OH = Data+
Where N = number of entries

15.2 Split I$/D$ Reasoning

Avoid structural hazard (read ports), store additional metadata for pred, exploit
data locality for prefetch, I$ can be RO.

15.3 Cache Performance Metrics

%miss =
# Misses

# Accesses

%hit =
# Hits

# Accesses
= 1−%miss

thit: time to access cache.
tmiss: time to bring data into cache.

15.4 Cache Performance Equation

tavg = thit +%miss · tmiss

15.5 Cache Misses: 3(4)C Hill Model

15.5.1 Cold Misses

Independent of the cache, equal to number of blocks in the trace

Mcold = #blocks used
assuming cache initialized to 0

15.5.2 Capacity Misses

Independent of cache organization or replacement policy.

Mcap = MFA,LRU −Mcold

where MFA,LRU is the number of misses in a FA LRU cache
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15.5.3 Conflict Misses

Dependent on cache organization and replacement policy.

Mconflict = Mtotal − (Mcap +Mcold)

15.5.4 Coherence Misses

Miss due to external invalidation (only in shared memory multiprocessors)

15.6 Replacement Policies

1. Random Replacement

2. FIFO/FILO

3. LRU (Least Recently Used): 2way=1 bit per set. N > 2way=counter
per way, OR log2 N bits per set

4. NMRU (Not Most Recent Use): 1 bit MRU set per line, random
select NOT MRU to replace

5. Belady’s: Furthest used in future replaced first

15.7 Prefetching

15.7.1 Stride Prefetcher

i: initial, s: stable, t: trans., n: incorrect

15.8 Write Propagation

• write-through (WT): propagate value immediately to $
• write-back (WB): write when block replaced (req. dirty bit)

15.9 Allocate

• Write-allocate: read from lower level, write value. Used with WB

• Write-non-allocate: write blk to next level. Used with WT
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16 Multiprocessors

16.1 Coherence

16.1.1 VI (MI) Protocol

S
Current Proc Other Proc
Load Store Load Store

I
miss
/V

miss
/V

- -

M hit hit
SD
/I

SD
/I

16.1.2 MSI Protocol

S
Current Proc Other Proc

Load Store Load Store

I
miss
/S

miss
/M

- -

S hit
upgrade
miss /M

-
Invalid.

/I

M hit hit
SD
/S

SD
/I

16.1.3 MSI - Directory

Tracks the following per cache block:

• Owner

• Sharers (bit vector)

• Home directory

• State
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16.2 Synchronization

16.2.1 Exchange

EXCH r1, 0(&lock) MOV r1 -¿ r2
LW [&lock] -¿ r1
SW r2 -¿ [&lock]

Wasted BW (other P spins on lock)

16.2.2 Load Locked/Store Conditional

LL [r1] -¿ r2
SC r3 -¿ [r1]

SC returns 0 in r3 if value in r1 modified

16.2.3 Test and Set

A0 EXCH r1, [&lock]
A1 BNEZ r1, A0

17



16.2.4 Test and Test and Set

EXCH LL/SC
LW [&lock] -¿ r1 LL [r1] -¿ r2
BNEZ r1, A0 BNEZ r2, A0
ADDI r1, 1-¿r1 ADDI r2, 1-¿r2
EXCH r1, [&lock] SC r2 -¿ [r1]
BNEZ r1, A0 BEQZ r2, A0

16.3 Consistency

Coherence: globally uniform view of single mem loc. Consistency: globally
uniform view of all mem locs.

16.3.1 Sequential Consistency

Proc’s see own LD/ST in prog order, see other Proc’s LD/ST in prog order. All
proc’s see same global LD/St order.

16.3.2 Ordering Rules

R → W,R → R,W → R,W → W

• Total Store Ordering (TSO): aka Processor Consistency, relaxes W →
R

• Weak Ordering (WO). All relaxed, acquire-release define critical sec-
tions

17 Superscalar

17.1 CPI

CPIideal =
1

N
IPCideal =

N ∗ c
c

=
instrs

c
N = number of issues/retires per c

17.2 Superscalar Challenges

17.2.1 Wide Instruction Fetch

Multiple instr/cycle, but could need to predict multiple branches/cycle. Banked
I$: DRAM banked, simultaneous read. Combining Network: Combine
banked instr blocks.

17.2.2 Wide Instruction Decode

Register R/W Ports: Nominal 2N read, 1N write. In reality, lower (not all instr
have 2 src, values bypassed), stores/branch (25-35%) don’t write regs
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17.2.3 N2 Bypassing

Full bypassing requires N2 dependence checks. N +1 input muxes at each ALU
input. Routing can be expensive.

17.2.4 Clustering

Mitigates N2 bypassing. Group FU’s into K clusters. Limited bypass (1 cycle
delay). (

N

K
+ 1

)
inputs/mux

(
N

K

)2

bypass/cluster

17.2.5 Wide Execute/Memory Access

N ALU’s ok, N FP expensive. Wide mem acc depends on instr mix, probably
only necessary N > 4

18 Multithreading
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