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1 Complex Numbers

1.1 Modulus and Argument
The modulus or absolute value of z + iy is
2| = Va2 +y?
The argument of a complex number must satisfy the equation
Y -1/Y
tan(f) == = 0=t =
an(0) . an (a:)
1.2 Polar Form
z=x +iy = re’ = r(cos(f) + isin(h))

where r is the modulus of z and 0 is the argument of z

1.3 Complex Conjugate

1.4 Powers of z
Forn e R
2" = r"(cos(nb) + isin(nh))
For o € C

a alnz



1.5 DeMoivre’s Formula

(cos(#) + isin(f))" = cos(nf) + i sin(nh)
1.6 Exponential Function
e = "W = %™ = ¢ (cos(y) + isin(y))
le*| = e arge® =y + 2knw

1.7 Complex Logarithms
For z # 0 and § = arg 2z

In(z) =log, |z| + (6 + 2n7w), n=0,£1,+2,...

1.8 Principal Logarithm
Lnz = log, |z| + i(Arg 2)
Where Arg is the principal argument

1.9 Complex Powers

If z and « are both complex powers

2O — @ In(z)
1.10 Trigonometric Functions
For any complex number z = x + iy
) eiz — et et + e—iz
sin(z) = 5 cos(z) = 5
d d
= sin(z) = cos(z) = cos(z) = —sin(z)
1.11 Trig Identities
tan(x) = 72102((?;)) cse(z) = Sinl(w)
sec(z) = —Cosl(x) cot(x) = Zi?((i))
1-— 2
sin?(z) = L= cos(2z)
2
1 2
cos?(z) = LT 90(27)
2
1 — cos(2x)
tan®(z) = ———— ——
an(z) 1+ cos(2z)



sin(2x) = 2sin(z) cos(x)
cos(2x) = cos?(z) — sin?(x)
cos(2z) = 2cos?(x) — 1

cos(2z) = 1 — 2sin’®(z)
sin(z + y) = sin(x) cos(y) + sin(y) cos(x)
cos(z + y) = cos(x) cos(y) — sin(z) sin(y)

sin(a) cos(B) = sin(a + ) + sin(a — )

2
cos(a) cos(B) = cos(a + fB) J2rcos(o¢ - B)
sin(a) sin(8) = cos(a — f3) ; cos(a + B)
1.12 Trig Integral Identities
1.13 Hyperbolic Trig Functions
For any complex number z = x + iy
sinh(z) = o’ cosh(z) = e’

2

diz sinh(z) = cosh(z) — cosh(z) = sinh(z)

1.14 Hyperbolic Trig Identities

tanh(z) = 2;2}}1((?) csch (z) = Sinlll(z)
sech (2) = 7&5}11(2) coth(z) = Z?r?}}:((j))

sinh(—z) = — sinh(z)
cosh(—2z) = cosh(z)
cosh?(z) — sinh?(z) = 1
1 — tanh?(z) = sech ?(z)
sinh(z 4+ y) = sinh(z) cosh(x) + cosh(y) sinh(y)
cosh(z + y) = cosh(z) cosh(y) + sinh(y) sinh(y)
sin(z) = sin(z) cosh(y) + 4 cos(x) sinh(y)
cos(z) = cos(x) cosh(y) — i sin(x) sinh(y)



2 Differential Equations
2.1 Autonomous First-Order DE’s

dy
%*f(y)

2.2 Homogenous DE’s

et al(:r)—y + ap(z)y =

2.3 Separable Equations

2.4 Linear First-Order DE’s

a1(9€)% +ao(z)y = g(x)

The solution to a linear differential equation is of the form

Y="Yc+ Yp
where y. is the solution to the associated homogeneous equation and y, is the particular solution
of the non-homogeneous equation.
2.4.1 Standard Form

Divide both sides of Linear DE equation by a;:

s Py = f(2)

2.4.2 Integrating Factor

To solve a Linear DE, first find its standard form

Yy Py = f(2)

and then multiply by the integrating factor
ef P(z)dz

to get

Ziy@f P(x)dz + P(x)ef P(x)dzy _ f(x)ef P(x)dz
X

dy

o, [efP(w)dxy] _ f(a:)ef P(z)dx



2.5 Existence and Uniqueness Theorem

Suppose a,(z), an—1(x),...,a1(x),ao(x), and g(z) are continuous in some interval I containing x
and a,(z) # 0 in I. Then the IVP has a solution in I that is unique

2.6 Superposition Principle for Homogeneous Equations
Let y1,¥s,...,yx be solutions of an nth order homogeneous differential equation on an interval I.

Then the linear combination

y = c1y1(z) + caya(z) + ... + cryr(z)
is also a solution to the differential equation on I

2.7 Linear Dependence/Independence

A set of functions fi(z), fa(z), ..., fn(z) is said to be linearly dependent on an interval I if there
exists constants ¢y, co, ..., ¢, not all zero, such that

cifi(x) +cafa(x) + ...+ cnfu(x) =0

for every x in the interval. If the set of functions is not linearly dependent on the interval, it is
said to be linearlyindependent

2.8 Wronskian

f} f2/ f7
W (f1, foy ey fr) = fl f2 fn
P G I G

2.9 Criterion for Linearly Independent Solutions

Let y1, 92, ..., yn be n solutions of the homogeneous linear nth order differential equation. The set of
solutions is linearly independent on I iff W(yl,y2, ...,y,) # 0 for every x in the interval

2.10 General Solution for Homogeneous Equations

Y=y = aryr(x) + caye(x) + ... + cryn(x)

2.11 General Solution for Non-homogeneous Equations

Y=Y+ yp=cry1(z) + coy2(x) + ... + cryr(z) + yp

2.12 Reduction of Order
For an ODE of the form

y"+ P(x)y’ + Qx)y =0
If y1(x) is a known solution of the ODE on I and y;(z) # 0 for every z in I, then

( )/ e—fP(a:)da:d
Y2 =@ By aa—
yi (@)



2.13 Undetermined Coefficients
2.14 Variation of Parameters

ynn(x) = w1 (2)y1(x) + uz(2)y2(z)

Y1 Y2 10 Yo wn 0
W= YL Yo Wi = ’f(x) Ys We = vy f(z)
W —f@) W2y f(e)
Uy = W W Uy = W W
_ [T ) f(@) T f()
uy = /0 Tdt Ug = ‘/O Tdt
(@) = (@) [ UL / 010,

2.15 Solution Types for Homogenous 2nd Degree Linear ODE’s
For an ODE of the form:

ay’ +by +c=0

and characteristic/auxiliary polynomial:

ar’ +br+c¢=0

with roots
. —b— Vb% — dac . —b+ Vb% — dac
1= g =
2a 2a

2.15.1 Distinct Roots - Overdamped

yn = c1e"! + cpe™!
2.15.2 Repeated Roots - Critically Damped
€.g. r =Tro =T

yn = cre"t + cote”™

2.15.3 Complex Conjugate Roots - Underdamped

If 1,72 complex, then we can write rl = a + ib,r2 = a — ib

yn = e*(c1 cos(bx) + co sin(bx))



3 Laplace Transform

Let f be a function defined for ¢t > 0
2{f0) = [ e s
0

3.1 Exponential Order

A function is of exponential order if there exists constants ¢, M > 0, and T > 0 s.t. |f(t)| < Me*
forallt >T

If f(t) piecewise continuous on the interval [0, co] and of exponential order, then £L{f(t)} exists
for s > c.

3.2 Basic Laplace Transforms

{1} =1 L{t"} =

S

Llsin(kt)} = ke | Lleos(ht)) = ri

L{sinh(kt)} = = | L{cosh(kt)} = 224z

3.3 First Translation Theorem

If £{f(t)} = F(s) and a is any real number, then
L{e”f()}(s) = L{f(O)}s —a) = F(s —a)
3.4 Second Translation Theorem

The unit step function u(t — a) is defined as

u(t—a) =

0 if0<t<a
1 ift>a

If L{f(t)} = F(s) and a > 0, then
Lf(t - a)ult — a)} = e~ F(5)

3.5 Transforms of Derivatives

If f, f,...f"=Y) are continuous on [0,00) and are of exponential order, and if f(™)(t) is piecewise
continuous on [0, 00), then

L{FI(1)} = s"F(s) = s"71f(0) = s"2f(0) — .. = f7D(0)
where F(s) = £{f(t)}

L{f" (D)} = s*F(s) = s£(0) = (0)

L{f'(t)} = sF(s) = f(0)



3.6 Derivatives of Transforms
If £{f(t)} = F(s) and n=1,2,3,..., then

{0} = (=1)" S F(s)

3.7 Transform of Integrals

F(s)

([ firar) =

Fs),

(AaﬂrmTzzg—%

3.8 Convolution

3.8.1 Convolution Operation

If f(t) and g(t) are piecewise continuous on [0,c0), then the convolution of f and g, denoted by
the symbol f * g, is

feg= / f(r)g(t — r)dr

3.8.2 Convolution Theorem

If f(t) and g(t) are piecewise continuous on [0, 00) and of exponential order, then
L{fx g} = {0} £{g(t)} = F(s)G(s)

3.8.3 Convolution in Inverse

LTHF(5)G(s)} = fxg

3.9 Dirac Delta Function
3.9.1 Unit Impulse

0 f0<t<ty—a
dalt —to) =4 5 ifto+a<t<to+a
0 ift>to+a

3.9.2 Dirac Delta Definition

(S(t—t)— o0 iftzto
YN0 it £t

Area under the distribution is 1:

/m5@—aﬂle

— 00



Sampling/Shifting Property:

/ " @)s(e — a)dr = f(a)

—o0
3.9.3 Dirac Delta Transform
For t5 > 0

LL6(t —tg)} = e 50
£{6(t)} =1

3.10 Additional Laplace Properties
3.10.1 Transform of a Periodic Function

I f(¢) is
e is piecewise continuous on [0, 00)
e of exponential order

e periodic with period T

T
LU} = Ty [ 0

3.10.2 Volterra Integral Equation

1) =90+ | fem(e—ryar
Taking Laplace transform of both sides:
F(s) =G(s)+ L{f(t)«h(t)} = G(s) + F(s)H(s)

3.10.3 Integrodifferential Equation
Circuit Analogy:

di I
L% + Ri(t) + ° /0 i(T)dT = E(t)



4 Inverse Laplace Transforms

4.1 Basic Inverse Laplace Transforms

2 () =1
%{Sia} — eat

g—l{ﬁ} = Sll’l(kt)
LY 5} = sinh(kt)

L H1} =6(t)
LY
.%_1{@} = cos(kt)
L 2z} = cosh(kt)

:tn

4.2 The Inverse Laplace Transform

Suppose that f(t) is a continuous and of exponential order |f(¢)] < ce®. Then, the Inverse Laplace
Transform is given by
o+i00
/Ufioo

1
T 2w

Ft)= L7HF(s)}(t) F(z)e™dt

Provided o > «

4.3 Inverse Laplace Transform Integral

/U+ioo
T—100

For some t, as © — —oo and |y| — oo

1

ft) = L7HF(s)}(t) = 5 F(z)e*'dt = Res(e™ F(s), 1)
k=1

For some t, as © — 400 and |y| — oo

1

" 2mi

F(2)e*'dt =0

/0'+ioc
T—100

Ft)= L7HF(s)}(t)

5 Complex Analysis

5.1 Sets
5.1.1 Neighborhood
A circle with radius p and center at zg is given by

|z —z20l=p

Note that |z — 2| is equivalently the distance between two points.
This circular region (open disk) is called a neighborhood.

5.1.2 Interior Point

A point zj is called an Interior Point of a set S if there exists some neighborhood of zy that lies
entirely within S.

10



5.1.3 Boundary Point

A point z is called an Boundary Point of a set S if any neighborhood of z; contains at least one
point in S and one point not in S.

5.1.4 Open Sets

If every point z in S is an interior point, then S is an open set.

5.1.5 Closed Sets

If S contains all its boundary points, then S is a closed set.

5.1.6 Connected Set

A set is connected if any two points z1, 29 in .S can be connected by a polygonal line that lies entirely
in the set.

5.1.7 Domain

A set S which is open and connected is called a domain.

5.2 Functions

The image w of a complex number will be some other complex number u + iv

w = f(2) =u(z,y) + iv(z,y)

where f(z) is a complex function

5.3 Stream Flow

A complex function can also be interpreted as a Two-Dimensional Fluid Flow
f(z) = u(z,y) +iv(z,y)

dx dy
E—U(m,y> E_v($>y)

5.4 Limit of a Function

Suppose the function f is defined in some neighborhood of zy, except possibly at zg itself. Then f
is said to possess a limit at zg, written

lim f(z)=1L

Z—20

if for each € > 0, there exists a ¢ > 0 such that |f(z) — L| < € whenever 0 < |z — 29| <

11



5.5 Continuity

A function is continuous at a point zg if

lim f(2) = f(z0)

Z—r20

5.6 Derivative

Suppose the complex function f is defined in a neighborhood of a point zg. The derivative of f at
20 18

Similar to real functions, differentiability implies continuity

5.7 Analyticity

A complex function w = f(z) is said to be analytic at a point zq if f is differentiable at zy and at
every point in some neighborhood of z

5.7.1 Entire Function

Functions that are analytic at any z are called entire functions

5.8 Cauchy-Riemann Equations

Suppose f(z) = u(z,y) + iv(z,y) is differentiable at a point z = x + iy. Then at z the first-order
partial derivatives of u and v exist and satisfy the Cauchy-Riemann Equations

du dv du dv

dr _dy dy  dx
5.9 Condition for Analyticity

Suppose the real-valued functions u(z,y) and v(x,y) are continuous and have continuous first-order
partial derivatives in a domain D. If u and v satisfy the Cauchy-Riemann equations at all points of
D, then the complex function f(z) = u(z,y) + iv(z,y) is analytic in D.

5.10 Harmonic Functions

A real-value function ¢(x,y) that has continuous second-order partial derivatives in a domain D and
satisfies Laplace’s equation is said to be harmonic in D.

_de?  do®
Codx?  dy?

Suppose f(z) = u(x,y) + w(x,y) is analytic in a domain D. Then the functions u(z,y) and
v(z,y) are harmonic functions

V2¢(z,y) 0

12



6 Complex Integration

Let f be defined at points of a smooth curve C' defined by © = z(t),y = y(t),a <t < b. The contour
integral of f along C' is

/cf( )dz = ||P||aozf 23 ) Azg

6.1 Contour Integrals

If f continuous on a smooth curve C given by z(t) = x(t) + iy(t),a < t < b, then

[ == [ " Ft) (1t = / " fryr

6.2 Bounding Theorem

If f is continuous on a smooth curve C' and if |f(z)] < M for all z on C, | [ f(z)dz| < ML, where
L is the length of C.

6.3 Circulation and Net Flux
6.3.1 Book Definition
For f(z) = u(z,y) +i(z,y) and F = (U, V)

§1§f dzfygc(u—w)(dx+zdy ygf Tds +z %f Nds
circ = Re(ygcmdz) - (y%f-Tds)

ﬂux:Im(y%%dz) — (y%f-Nds)

where T and N are the unit tangent and unit normal vectors to the positively oriented simple
closed contour C

6.3.2 Alternative (Nachman Definition)
For f(z) = u(x,y) + iv(z,y) and a vector field with —V component F = (U,-V)=(P,Q)

?/)f )dz = [cire(F)] 4 i[Alux(F)]

circ = Re(y%f(z)dz) - (gﬁcf-:rds) - /dea:+Qdy
flux = Im §I§f = %f'Nds)z/Cde—Qda:

13



6.4 Cauchy Goursat

Suppose a function f is analytic in a simply connected domain D. Then for every simple closed
contour C' in D

§£Cf(z)dz =0

Suppose C, C1, ..., C,, are simple closed curves with a positive orientation such that C,C4,...,C),
are interior to C' but the regions interior to each C, k = 1,2, ...,n, have no points in common. If f
is analytic on each contour and at each point interior to C but exterior to all the Cy, k =1,2,...,n,
then

ygcf(z)dz = ]; ). f(z)dz

Additionally, for any 2o € C interior to any simple closed contour C, then

yg 1 2t ifn=1

— _dz= )

o (z—2z)" {0 ifneZ,n+#1

6.5 Independence of Path and Implications of Analyticity

Let zg and 21 be points in domain D. A contour integral [ f(z)dz is independent of the path
if the value of the integral is the same for any contour C' in C' with initial and end points zg and z;.

If f is an analytic in a simply connected domain D, then fc f(2)dz is independent of the path
C.

6.6 Existence of an Antiderivative
If f is analytic in a simply connected domain D, then f has an anti-derivative in D; that is, there
exists a function F s.t. F'(z) = f(z) for all z in D

6.7 Fundamental Theorem for Contour Integrals

Suppose f is continuous in a domain D and F is an antiderivative of f in D. Then for any contour
C'in D with initial point zg and terminal point zq,

/ f(z)dz = F(z1) — F(20)
c

6.8 Cauchy Integral Formula’s

Let f be analytic in a simply connected domain D, and let C' be a simple closed contour lying
entirely within D. If zy is any point within C, then

f(z0) = 11/(f(z)dz

27 z—2zp)
c
" n! f(z
" ):Wﬁ(Z—EO;”Hd
C



6.9 Liouville’s Theorem

The only bounded entire functions are constants.

6.10 Cauchy’s Inequality
n!M

Tn

1109 (z0)| <

where M is a real number such that |f(z)] < M for all points z on C, and C is the contour
|z — 20| = 1.

7 Sequences and Series

(oo}

Zazk = lim a+az+az? +az®+ ...+ a2k = a
k—o0 11—z

k=0

7.1 Convergence/Divergence Tests

7.1.1 nth Term Test

If limp—o002zn # 0, then the series limy 4 zj diverges.

7.1.2 Ratio Test
lim |2 =
n—oo Z,

o If [ < 1, series converges absolutely
o If L > 1 or L = o0, the series diverges

e If L =1, the test is inconclusive

7.1.3 Root Test

lim {/|z,| =L
n—oo

o If L < 1, series converges absolutely
o If L >1 or L = oo, the series diverges

o If L =1, the test is inconclusive

7.2 Geometric Series

If |z| < 1, then

15



7.3 Power Series

o0
Z ap(z — zo)k
k=0

Represents an analytic function within its circle of convergence.

7.4 Taylor’s Theorem
Let f be analytic within a domain D and let zg be a point in D. Then

4k (4
foy = Ty
k=0 ’

7.5 Maclaurin Series

Taylor series centered at zg = 0

ok
fo=3 L0y

k=0

7.6 Laurent’s Theorem

Let f be analytic within the annular domain D defined by r < |z — z9| < R. Then, f has the series
representation

f)= ) al(z—z)"
k=—o00
valid for r < |z — 29| < R. The coefficients ay, are given by
_ 1 f(s)
ay = 5= P ——7
2w f. (s — zo)Ft?
where k = 0,+1,42, ..., and C is a simply closed curve that lies entirely within D and has zp in

its interior.
Note: Assuming f(z) analytic on domain D,

s k
ap = 1 §£(f()ds 1 d F(2)] 2=z

“ i P o T Gy a

ds

7.7 Common Taylor Series

N I S +£—iﬁ

B 2030 4 5T (n)!_kzok!
2t B,

costo) =l=gr+p -G+ :,;J(%)!x

; a® b el o (-1 2k+1

sine) =gt st = L e



8 Poles, Zeros, Residues

8.1 Zeros

2o is a zero of a function f if f(zp) = 0. An analytic function f has a zero of order n at z = z if

f(20) =0, f (20) =0,..., f" 1 (20) = 0,but f"(z9) #0

8.2 Singularities

Type of Singularities | Order Laurent Series
Removable Singularity | n =0 ap +ai(z — z0) + ag(z —20)% + ..
Pole of Nth Order n=n (Z o+ (: Z‘;L)nlll +..+ (Z - ) +ag + al(z —20) + -
Simple Pole n = Gy Tao+ai(z —z) + .
Essential Singularity | n = oo B (z(i;zi)z + (Za_;zlo) +ag+ai(z — zo) + ...
8.3 Poles

If f and g are analytic at z = 29 and f has a zero of order n at z = z9 and g(z9) # 0, then the

function F'(z) = ?8 has a pole of order n at z = zp.

8.4 Residue

21

Res(f(2), 20) = a- 1_i§,§ £z

Rearranging gives

2mia_1 = 2miRes(f(z),20) = % f(2)dz
c

8.5 Calculating Residue
8.5.1 Simple Pole
Res(f(z),20) = lim (z — 29) f(2)

z—20
8.5.2 Pole of Order N

m—1
Res(f(z),20) = L im ¢

(n— 1)l =5 dzn—1

(2 = 20)" f(2)

8.5.3 Non-Rational Functions

17



8.6 Cauchy Residue Theorem

Let D be a simply connected domain and C be a simply closed curve inside D. Suppose f(z) analytic
on C and at region enclosed by C except at finitely many isolated singular points z1, 23, ..., 2,. Then

N
550 f(2)dz = zm'ZRes( f(2), %)

9 Real Value Integrals
9.1 Trig Function Integrals

For integrals of the form:

2w
/ F(cos(#) sin(6)db
0
Apply change of variables using z = ¢ = cos(6) + i sin(f):
1 1 dz
F(= -1\ - U AN ied
$ PGG+a) 5= )T
Where C' is |2| = 1 and df = &
ei9 +€—i9 1 1
cos(f) = 5 = 5(2 +2z77)
) 619 _ 6—20 1 .
sin(0) = S = Lz -2

9.2 Cauchy Principal Value
For integrals of the form:

T

[eS) 0
/ f(x)dx = Tlgrolo/ f(z)dx 4+ lim f(x)dx

r—00 0

If both limits exist, the integral is convergent. Otherwise, integral is divergent.

T

P.V.[ f(z)dz = lim f(x)dx

r—oo [_

If the integral is convergent, then its P.V. (Principal Value) is equal to the value of the integral

9.2.1 Jordan Lemma

Suppose f(z) = ggig, where the degree of P(z) is n and the degree of Q(z) is m. C, is a semicircular

contour z = Re*?, 0 < § < 7, then
If m >n+1, then

/Crf(z)dz—/crgz;dzﬁo as R— oo

18



If m >n and a > 0, then

/Cr f(2)e"*dz = /c gz;e’mdz -0 as R— o

9.3 Indented Contours

Suppose f has a simple pole z = ¢ on the real axis. If C, is the contour defined by z = ¢ + re? for
0 <0 <m, then

lim /C f(2)dz = wiRes(f(2),¢)

e—0

If C is the indented contour,

ygéf(z)dz = P.V./_Oo f(:zc)dx—i—?_rg& . f(z)dz
0o N
P.V./_ f(z)dz = ZRes(f(z), zj) — miRes(f(2),c)

10 Absolute Value and Inequality

10.1
10.2 Triangle Inequality
] =1yl < |z +yl < |z| + [yl
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