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1 Multi-variable Functions

Implicit Explicit
F (x, y, z) = 0 z = f(x, y)

A function z = f(x, y) assigns to each point (x, y) in a set D a unique real number z in a subset
of R. The set D is the domain of f . The range of f is the set of real numbers z that are assumed
as the points (x, y) vary over the domain

1.1 Level/Contour Curves

For a surface z = f(x, y)
A Contour curve is the path given by setting the surface z = f(x, y) to a constant z = z0.
A Level curve is the path given by projecting a ContourCurve onto the XY-plane (z = 0).

2 Limits

2.1 Two Variable Limit

The function f(x, y) has the limit L as P (x, y) approaches P0(a, b), written

lim
(x,y)→(a,b)

f(x, y) = lim
P→P0

f(x, y) = L

if, given any ε > 0, there exists a δ < 0 s.t.

|f(x, y)− L| < ε

whenever (x, y) is in the domain of f and

0 < |PP0| =
√

(x− a)2 + (y − b)2 < δ
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2.2 Limit Evaluation Methods

Two approaches taken to determine if a limit exists or does not exist

• Assume the limit exists

– Factorization

– Algebraic Conjugate

– Conjugate and Basic Theorems

• Assume the limit does not exist

– Use two paths with different results for the limit to show that the limit does not exist

2.3 Interior and Boundary Points

Let R be a region in R2.
An Interior Point P of R lies entirely within R (it is possible to find a disk centered at P with

some radius that fits entirely within R).
An Boundary Point Q of R lies on the edge of R (every disk centered at Q contains at least

one point in R and one point not in R

2.4 Open and Closed Sets

A region is open if it consists entirely of interior points. A region is closed if it contains all its
boundary points.

{(x, y) : x2 + y2 < 9}

is an open region

{(x, y) : x2 + y2 ≤ 4}

is a closed region

2.5 Two-Path Test for Nonexistence of Limits

If f(x, y) approaches two different values as (x, y) approaches (a, b) along two different paths in the
domain of f , then

lim
(x,y)→(a,b)

f(x, y)

does not exist.
Methods:

• x = g(u, v), y = h(u, v)

• y = mxn, x = myn
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3 Continuity

The function f is continuous at the point (a, b) provided

• f is defined at (a, b)

• lim(x,y)→(a,b) f(x, y) exists

• lim(x,y)→(a,b) f(x, y) = f(a, b)

3.1 Continuity of Composite Functions

IF u = g(x, y) is continuous at (a, b) and z = f(u) is continuous at g(a, b), then the composite
function z = f(g(x, y)) is continuous at (a, b)

4 Derivatives

4.1 1D Derivative

f ′(a) =
d

dx
f(x)|x=a = lim

h→0

f(a+ h)− f(a)

h

4.2 Multi-variable Partial Derivative

fx(a, b) =
∂

∂x
f(x, y)|(a,b) = lim

h→0

f(a+ h, b)− f(a, b)

h

fy(a, b) =
∂

∂y
f(x, y)|(a,b) = lim

h→0

f(a, b+ h)− f(a, b)

h

4.3 Clairaut’s Theorem

Equality of Mixed Partial Derivatives:
If fyx and fxy are continuous and defined on D ∈ R2, then

∂2

∂x∂y
f(x, y) =

∂2

∂y∂x
f(x, y)

4.4 Differentiability

The function z = f(x, y) is differentiable at (a, b) provided fx(a, b) and fy(a, b) exist and the
change ∆z = f(a+ ∆x, b+ ∆y)− f(a, b) equals

∆z = fx(a, b)∆x+ fy(a, b)∆y + ε1∆x+ ε2∆y

where for fixed a and b, ε1 and ε2 are functions that depend only on ∆x and ∆y, with (ε1, ε2)→
(0, 0) as (∆x,∆y)→ (0, 0).

A function is differentiable on an open set R if it is differentiable at every point on R.
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4.4.1 Conditions for Differentiability

Suppose the function f has

• partial derivatives fx and fy on an open set containing (a, b)

• fx and fy continuous at (a, b)

Then f is differentiable at (a, b).

4.4.2 Differentiable Implies Continuous

If a function f is differentiable at (a, b), then it is continuous at (a, b)

5 Chain Rule

5.1 One Independent Variable

Let z be a differentiable function of x, y and let x, y be differentiable functions of t. Then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

5.2 Two Independent Variables

Let z be a differentiable function of x, y and let x, y be differentiable functions of s and t. Then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

dz

ds
=
∂z

∂x

dx

ds
+
∂z

∂y

dy

ds

5.3 Implicit Differentiation

Let F be differentiable on its domain and suppose F (x, y) = 0 defines y as a differentiable function
of x. Provided Fy 6= 0

dy

dx
= −Fx

Fy

6 Directional Derivatives and Gradient

6.1 Directional Derivative

Let f be differentiable at (a, b) and let u = 〈u1, u2〉 be a unit vector in the xy-plane. The
Directional Derivative of f at (a, b) in the direction of u is

Duf(a, b, c) = lim
h→0

f(a+ hu1, b+ hu2, c+ hu3)− f(a, b, c)

h

Duf(a, b, c) = 〈fx(a, b, c), fy(a, b, c), fz(a, b, c)〉 · 〈u1, u2, u3〉
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Duf(a, b, c) = ∇f(a, b, c) · ~u

6.2 Gradient

Let f be differentiable at the point (x, y). The gradient of f at (x, y) is the vector valued function

∇f(x, y) =
〈∂z
∂x
,
∂z

∂y
,
∂z

∂z

〉
=
〈
fx, fy, fz

〉
6.3 Directions of Change

Let f be differentiable at (a, b) with ∇f(a, b, c) 6= 0

• The maximum rate of increase of f is in the ∇f(a, b, c) direction

– The rate of change in this direction is |∇f(a, b, c)|

• The minimum rate of increase of f is in the −∇f(a, b, c) direction

– The rate of change in this direction is −|∇f(a, b, c)|

• The directional derivative is zero in any direction orthogonal to ∇f(a, b, c)

6.4 Gradient and Level Curves

Given a function f differentiable at (a, b), the line tangent to the level curve of f at (a, b) is orthogonal
to the gradient ∇f(a, b), provided ∇f(a, b) 6= 0

The tangent at any point on a level curve contour is orthogonal to the gradient.

7 Multi-variable Taylor Series

7.1 Tangent Planes

The Tangent Plane to a function f at a point (a, b, c) is given by

∇F (x, y, z) · 〈x− a, y − b, z − c〉 = 0

7.2 Linear Approximations

L(x, y) = fx(a, b)(x− a) + fy(a, b)(y − b) + f(a, b)

L(x, y) = fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) + f(a, b, c)
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7.3 Sensitivity Analysis

z − c =
∂f

∂x
|(a,b)(x− a) +

∂f

∂y
|(a,b)(y − b)

And let

∆z = z − c ∆x = x− a ∆y = y − b

So

∆z =
∂f

∂x
|(a,b)∆x+

∂f

∂y
|(a,b)∆y

The per-unit form of Sensitivity Analysis is given by

dz

z
=
∂f

∂x
|(a,b)

dx

x

x

z
+
∂f

∂y
|(a,b)

dy

y

y

z

Substituting

dz

z
=
∂f

∂x
|(a,b)

dx

x

a

c
+
∂f

∂y
|(a,b)

dy

y

b

c

7.4 Small Signal Modelling

7.4.1 State Space Equations

dx1

dt
= a11x

2
1 + a12x2 + b11u1 + b12u2

dx2

dt
= a21x

2
1 + a22x2 + b21u1 + b22u2

7.4.2 Output Equations

y1 = c11x1 + c12x2 + d11u1 + d12u2

y2 = c21x1 + c22x2 + d21u1 + d22u2

7.4.3 State Variable Equilibrium Condition[
dx1

dt
dx2

dt

]
=

[
0
0

]
=

[
f1(x10, x20, U1, U2)
f2(x10, x20, U1, U2)

]
7.4.4 Small Signal Model in Matrix Form[

dx̂1

dt
dx̂2

dt

]
= Jf

[
x̂1

x̂2

]
+Bf

[
û1(t)
û2(t)

]
Where Jf and Bf are Jacobian Matrices

7.4.5 Output Equilibrium Point[
g1(x10, x20, U1, U2)
g2(x10, x20, U1, U2)

]
=

[
y10

y20

]
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7.4.6 Output Small Signal Equation[
ŷ1

ŷ2

]
= Jg

[
x̂1

x̂2

]
+ Bg

[
û1(t)
û2(t)

]
Where Jg and Bg are Jacobian Matrices

8 Double Integrals

8.1 Double Integrals over Rectangular Regions

A function f defined on a rectangular region R in the xy-plane is integrable on R if

lim
∆→0

n∑
k=1

f(x∗k, y
∗
k)∆Ak

exists for all partitions of R and for all choices of (x∗k, y
∗
k) within those partitions. The double

integral of f over R is

¨
R

f(x, y)dA = lim
∆→0

n∑
k=1

f(x∗k, y
∗
k)∆Ak

8.2 Iterated Integrals and Fubini’s Theorem

Let f be continuous on the rectangular region R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. The double
integral of f over R may be evaluated by either of two iterated integrals:

¨
R

f(x, y)dA =

ˆ d

c

ˆ b

a

f(x, y)dxdy =

ˆ b

a

ˆ d

c

f(x, y)dydx

8.3 Average Value of a Function over Rectangular Region

The average value of an integrable function f over a region R is

f̄ =
1

Area ofR

¨
R

f(x, y)dA

8.4 Double Integrals over General Regions

Let R be a region bounded below and above by the graphs of the continuous functions y = g(x) and
y = h(x), respectively, and by the lines x = a and x = b. If f is continuous on R, then

¨
R

f(x, y)dA =

ˆ b

a

ˆ h(x)

g(x)

f(x, y)dydx

Let R be a region bounded on the left and right by the graphs of the continuous functions
x = g(y) and x = h(y), respectively, and the lines y = c and y = d. If f is continuous on R, then

¨
R

f(x, y)dA =

ˆ d

c

ˆ h(y)

g(y)

f(x, y)dxdy
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8.5 Double Integrals over Polar Regions

Let f be continuous on the region R in the xy plane expressed in polar coordinates as R = {(r, θ) :
0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β}, where β − α ≤ 2π.

¨
R

f(x, y)dA =

ˆ β

α

ˆ b

a

f(r cos(θ), r sin(θ))rdrdθ

For R = {(r, θ) : 0 ≤ g(θ) ≤ r ≤ h(θ), α ≤ θ ≤ β}
¨
R

f(x, y)dA =

ˆ β

α

ˆ h(θ)

g(θ)

f(r cos(θ), r sin(θ))rdrdθ

8.6 Area of Polar Regions

A =

¨
R

dA =

ˆ β

α

ˆ h(θ)

g(θ)

rdrdθ

8.7

9 Triple Integrals

9.1 Triple Integrals in Rectangular Coordinates
˚

D

f(x, y, z)dV =

ˆ b

a

ˆ h(x)

g(x)

ˆ H(x,y)

G(x,y)

f(x, y, z)dzdydx

9.2 Average Value of a Function of Three Variables

f̄ =
1

Volume ofD

˚
D

f(x, y, z)dV

9.3 Triple Integrals in Cylindrical Coordinates
˚

D

f(x, y, z)dV =

ˆ b

a

ˆ h(θ)

g(θ)

ˆ H(r cos θ,r sin θ)

G(r cos θ,r sin θ)

f(r cos θ, r sin θ, z)rdzdrdθ

9.4 Change of Variables for Common Coordinate Systems

Coordinates Variables

Cartesian
Cylindrical
Spherical

x y z r θ ρ φ

x y z
√
x2 + y2 tan−1( yx )

√
x2 + y2 + z2 cos−1( zρ )

r cos(θ) r sin(θ) z r θ r csc(θ) cos−1( zρ )

ρ sin(φ) cos(θ) ρ sin(φ) sin(θ) ρ cos(φ) ρ sin(φ) θ ρ φ
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10 Change of Variables

10.1 Jacobian Determinant/Matrix

Given a transformation T : x = g(u, v), y = h(u, v), where g and h are differentiable on a region of
the uv-plane, the Jacobian Determinant is

J(u, v) =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣
∂(x)
∂(u)

∂(x)
∂(v)

∂(y)
∂(u)

∂(y)
∂(v)

∣∣∣∣∣ =
∂(x)

∂(u)

∂(y)

∂(v)
− ∂(x)

∂(v)

∂(y)

∂(u)

Given a transformation T : x = g(u, v), y = h(u, v), z = p(u, v, w), where g,h and p are differen-
tiable on a region of the uv-plane, the Jacobian Determinant is

J(u, v) =
∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣
∂(x)
∂(u)

∂(x)
∂(v)

∂(x)
∂(w)

∂(y)
∂(u)

∂(y)
∂(v)

∂(y)
∂(w)

∂(z)
∂(u)

∂(z)
∂(v)

∂(z)
∂(w)

∣∣∣∣∣∣∣
10.2 Change of Variables Integrals¨

R

f(x, y)dA =

¨
S

f(g(u, v), h(u, v))|J(u, v)|dA

˚
D

f(x, y, z)dV =

¨
S

f(g(u, v, w), h(u, v, w), p(u, v, w))|J(u, v, w)|dV

11 Surface Integrals

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by r(u, v) =
〈x(u, v), y(u, v), z(u, v)〉, where u and v vary over R = {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d}. Assume also
that the tangent vectors

tu =
∂x

∂u
=
〈∂x
∂u
,
∂y

∂u
,
∂z

∂u

〉
tv =

∂x

∂v
=
〈∂x
∂v
,
∂y

∂v
,
∂z

∂v

〉
are continuous on R and the normal vector tu× tv is nonzero on R. Then the surface integral of

f over S is

¨
S

f(x, y, z)dS =

¨
R

f(x(u, v), y(u, v), z(u, v)|tu × tv|dA

11.1 Surface Area

Surface Area =

¨
S

1dS =

¨
R

1|tu × tv|dA
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12 Curl and Circulation

Circ =

˛
C

F · Tds

Curl = ∇× F = lim
A→0

¸
C
F · Tds
A

where A is the area enclosed by contour C

Curl = ∇× F =
〈 ∂

∂x
,
∂

∂y
,
∂

∂z

〉
×
〈
f(x, y, z), g(x, y, z), h(x, y, z)

〉
13 Divergence and Flux

Flux =

˛
C

F · nds

Div = ∇ · F = lim
A→0

¸
C
F · nds
A

where A is the area enclosed by contour C

Div = ∇ · F =
〈 ∂

∂x
,
∂

∂y
,
∂

∂z

〉
·
〈
f(x, y, z), g(x, y, z), h(x, y, z)

〉
14 Vector Identities

14.1 Dot Product

A ·B = 〈A1, A2, A3〉 · 〈B1, B2, B3〉 = A1B1 +A2B2 +A3B3

14.2 Cross Product

A×B = 〈A1, A2, A3〉 × 〈B1, B2, B3〉 =

∣∣∣∣∣∣
î ĵ k̂
A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
14.3 Scalar Triple Product

A · (B × C) = B · (C ×A) = C · (A×B)

14.4 Divergence/Curl Linearity

∇ · (A+B) = ∇ ·A+∇ ·B

∇ · (A+B) = ∇×A+∇×B

14.5 Second Derivatives

14.5.1 Source Free Field

∇ · (∇×A) = 0
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14.5.2 Rotation Free Field

∇× (∇Ψ) = 0

14.5.3 Scalar Laplacian

∇ · (∇Ψ) = ∇2Ψ

14.5.4 Vector Laplacian

∇(∇ ·A)−∇× (∇×A) = ∇2A

15 Stokes Theorem

circ(F ) =

˛
C

F · dr =

¨
S

(∇× F ) · ndS

16 Divergence Theorem

flux(F ) =

¨
S

F · nds =

˚
D

(∇ · F )dV

17 Useful Geometries

17.1 Normal Vectors

Normal for a sphere with equation x2 + y2 + z2 = ρ2:

<
x

z
,
y

z
, 1 >

Surface Explicit

Cylinder

Cone

Sphere

Paraboloid

Equation Normal Vector n Magnitude

x2 + y2 = a2 < x, y, 0 > a

x2 + y2 = z2 < x
z ,

y
z ,−1 >

√
2

x2 + y2 + z2 = a2 < x
z ,

y
z , 1 >

a
z

x2 + y2 = z < 2x, 2y,−1 >
√

1 + 4(z2 + y2)
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Surface Parametric

Cylinder

Cone

Sphere

Paraboloid

Equation Normal Vector n = tu × tv Magnitude |tu × tv|

r =< a cos(u), a sin(u), v > < a cos(u), a sin(u), 0 > a

r =< v cos(u), v sin(u), v > < v cos(u), v sin(u),−v >
√

2v

r =< a cos(u) sin(v), a sin(u) sin(v), a cos(v) > r =< a2 cos(u) sin2(v), a2 sin(u) sin2(v), a2 sin(v) cos(v) > a2 sin(v)

r =< v cos(u), v sin(u), v2 > < 2v2 cos(u), 2v2 sin(u),−v > v
√

1 + 4v2

18 Dirac Delta Distribution

∂(x− a) =

{
0 for x 6= a

∞ for x = a

18.1 Dirac Delta Integrals

Area under the distribution is 1:

ˆ ∞
−∞

∂(x− a)dx = 1

ˆ a

−∞
∂(x− a)dx =

ˆ ∞
a

∂(x− a)dx =
1

2

Spherical Coordinate Generalization:

ˆ r>0

0

∂(r)dr =
1

2

Sampling/Shifting Property:

ˆ ∞
−∞

f(x)∂(x− a)dx = f(a)

19 Scalar Density Dirac Distributions

Shape Cartesian Spherical Cylindrical

Point ρ = Qδ(x)δ(y)δ(z) ρ = Qδ(r)
2πr2

Infinite Line ρ = λδ(x)δ(y) ρ = λδ(r)
πr

Infinite Plane ρ = σδ(z)

Infinite Cylinder ρ = σδ(r −R)

Sphere ρ = σδ(r −R)
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20 Vector Valued Flux Density Dirac Distributions

Shape Cartesian Spherical Cylindrical

Planar Sheet ~J = Jsδ(z)x̂

Line ~J = Iδ(x)δ(y)ẑ ~J = Iδ(r)
πr ẑ

Cylinder (Axial) ~J = Jsδ(r −R)ẑ

Cylinder (Circumferential) ~J = Js[δ(y +R)− δ(y −R)]x̂ ~J = Jsδ(r −R)θ̂

21 Divergence Theorem LHS Surface Integrals

Shape Divergence Theorem LHS

Cylinder 2πrLf(r)

Line 2πrLf(r)

Plane 2Af(z), A = plane area

Sphere 4πr2f(r)

22 Stokes Theorem LHS Surface Integrals

Shape Stoke’s Theorem LHS

Solenoidal (Axial, ẑ) zf(z)

Solenoidal (Circumferential, θ̂) 2πrf(r)

Toroidal (Donut) 2πrf(r)

Plane (F ‖ x̂,J ‖ ẑ) 2xf(y)

23 Green’s Circulation Theorem

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a con-
nected and simply connected region R in the plane. Assume F = 〈f, g〉, where f and g have
continuous first partial derivatives in R. Then

˛
C

F · dr =

˛
C

fdx+ gdy =

¨
R

∂g

∂x
− ∂f

∂y
dA
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24 Green’s Flux Theorem

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a con-
nected and simply connected region R in the plane. Assume F = 〈f, g〉, where f and g have
continuous first partial derivatives in R. Then

˛
C

F · dr =

˛
C

fdy − gdx =

¨
R

∂f

∂x
+
∂g

∂y
dA

25 Trigonometry

25.1 Trig Identities

25.1.1 Half Angle Identities

sin2(x) =
1− cos(2x)

2

cos2(x) =
1 + cos(2x)

2

tan2(x) =
1− cos(2x)

1 + cos(2x)

25.1.2 Double Angle Identities

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x)− sin2(x)

cos(2x) = 2 cos2(x)− 1

cos(2x) = 1− 2 sin2(x)

25.2 Hyperbolic Trig

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2

tanh(x) =
sinh(x)

cosh(x)

csch (x) =
1

sinh(x)

sech (x) =
1

cosh(x)

coth(x) =
cosh(x)

sinh(x)
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25.3 Hyperbolic Trig Identities

sinh(−x) = − sinh(x)

cosh(−x) = cosh(x)

cosh2(x)− sinh2(x) = 1

1− tanh2(x) = sech 2(x)

sinh(x+ y) = sinh(x) cosh(x) + cosh(y) sinh(y)

cosh(x+ y) = cosh(x) cosh(y) + sinh(y) sinh(y)
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