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1 Multi-variable Functions

Implicit Explicit
F(z,y,2) =0 | z = f(z,y)

A function z = f(z,y) assigns to each point (z,y) in a set D a unique real number z in a subset
of R. The set D is the domain of f. The range of f is the set of real numbers z that are assumed
as the points (z,y) vary over the domain

1.1 Level/Contour Curves

For a surface z = f(x,y)
A Contour curve is the path given by setting the surface z = f(z,y) to a constant z = z.
A Level curve is the path given by projecting a ContourCurve onto the XY-plane (z = 0).

2 Limits
2.1 Two Variable Limit

The function f(z,y) has the limit L as P(z,y) approaches Py(a,b), written

li y) = 1 ) =1L
(z,y)ﬂa,b>f(m Y) ng;,ﬁf(x Y)

if, given any € > 0, there exists a § < 0 s.t.

|f(l‘,y)*L| <€

whenever (z,y) is in the domain of f and

0<|PP|=+(z—a)2+(y—b2<s



2.2 Limit Evaluation Methods

Two approaches taken to determine if a limit exists or does not exist

e Assume the limit exists

— Factorization
— Algebraic Conjugate

— Conjugate and Basic Theorems
e Assume the limit does not exist

— Use two paths with different results for the limit to show that the limit does not exist

2.3 Interior and Boundary Points

Let R be a region in R2.

An Interior Point P of R lies entirely within R (it is possible to find a disk centered at P with
some radius that fits entirely within R).

An Boundary Point @ of R lies on the edge of R (every disk centered at () contains at least
one point in R and one point not in R

2.4 Open and Closed Sets

A region is open if it consists entirely of interior points. A region is closed if it contains all its
boundary points.

{(z,y) : 2 +y* <9}
is an open region

{(z,y) :2® +y* <4}

is a closed region

2.5 Two-Path Test for Nonexistence of Limits

If f(x,y) approaches two different values as (x,y) approaches (a,b) along two different paths in the
domain of f, then

lim  f(x,y)

(z,y)—(a,b)

does not exist.
Methods:

e = g(u,v),y = h(u,v)

o y=mz", xr=my"



3 Continuity

The function f is continuous at the point (a,b) provided
e f is defined at (a,b)
o lim, ) (ap) f(2,y) exists
o lime y)—(ap) f(2,y) = f(a,b)

3.1 Continuity of Composite Functions

IF u = g(x,y) is continuous at (a,b) and z = f(u) is continuous at g(a,b), then the composite
function z = f(g(x,y)) is continuous at (a,b)

4 Derivatives

4.1 1D Derivative

d B) —
f'(a) = = f(@)loma = lim w

4.2 Multi-variable Partial Derivative

P h,b) — f(a,b
fx(a,b>=azf(ﬁ”>y)'<a’b>:,{ii%f(ﬁ /~)L e

P b+ h)— f(a,b
fy(a,b):ayﬂx’y)'(“v“:%ﬂf})ﬂa +iz He

4.3 Clairaut’s Theorem

Equality of Mixed Partial Derivatives:
If fyo and f., are continuous and defined on D € R2, then

02 02
&Cayf(x’y)  Oyox

f(z,y)

4.4 Differentiability
The function z = f(z,y) is differentiable at (a,b) provided f;(a,b) and f,(a,b) exist and the
change Az = f(a + Ax,b+ Ay) — f(a,b) equals

Az = fo(a,b)Ax + fy(a,b)Ay + e1 Az + e2Ay

where for fixed a and b, €; and ey are functions that depend only on Az and Ay, with (e1,€3) —
(0,0) as (Az, Ay) — (0,0).
A function is differentiable on an open set R if it is differentiable at every point on R.



4.4.1 Conditions for Differentiability

Suppose the function f has
e partial derivatives f, and f, on an open set containing (a,b)
e f, and f, continuous at (a,b)

Then f is differentiable at (a,b).

4.4.2 Differentiable Implies Continuous

If a function f is differentiable at (a,b), then it is continuous at (a, b)

5 Chain Rule

5.1 One Independent Variable

Let z be a differentiable function of z,y and let z,y be differentiable functions of t. Then

dz 8zdj Bzdi/

at " ozdt  oydt

5.2 Two Independent Variables

Let z be a differentiable function of x,y and let x,y be differentiable functions of s and t. Then

de _ 0zdv | 0z dy
dt Oz dt Oy dt

d: _0zde | 0:dy
ds Oxds Oyds

5.3 Implicit Differentiation

Let F be differentiable on its domain and suppose F(x,y) = 0 defines y as a differentiable function

of . Provided F}, # 0

dy F
dx F,

6 Directional Derivatives and Gradient

6.1 Directional Derivative

Let f be differentiable at (a,b) and let u = (uj,us) be a unit vector in the xy-plane.

Directional Derivative of f at (a,b) in the direction of u is

m fla+ huy, b+ hug, ¢+ hug) — f(a,b,c)
i

Dufahd) = ;

Duf(a7bvc) = <fw(avba c)vfy(avbv C)afz(aab7c)> ' <u17u27u3>

The



D,f(a,b,c) =Vf(a,b,c) -u

6.2 Gradient
Let f be differentiable at the point (z,y). The gradient of f at (z,y) is the vector valued function

Vi) = (5 o o) = (i £2)

6.3 Directions of Change
Let f be differentiable at (a,b) with Vf(a,b,c) #0
e The maximum rate of increase of f is in the V f(a,b, ¢) direction
— The rate of change in this direction is |V f(a, b, )|
e The minimum rate of increase of f is in the —V f(a, b, ¢) direction
— The rate of change in this direction is —|V f(a, b, ¢)|

e The directional derivative is zero in any direction orthogonal to V f(a, b, c)

6.4 Gradient and Level Curves

Given a function f differentiable at (a, b), the line tangent to the level curve of f at (a, b) is orthogonal
to the gradient V f(a,b), provided V f(a,b) # 0
The tangent at any point on a level curve contour is orthogonal to the gradient.

7 Multi-variable Taylor Series

7.1 Tangent Planes
The Tangent Plane to a function f at a point (a, b, c) is given by

VFE(z,y,z) {(x —a,y—bz—c) =0

7.2 Linear Approximations
L(z,y) = fa(a,b)(x — a) + fy(a,b)(y — ) + f(a,b)

L(Ji,y) = fl‘(aa b7 C)(x - Cl) + fy(avb’ C)(y - b) + fz(avbv C)(Z - C) + f(a" b7 C)



7.3 Sensitivity Analysis

of of
z—c= %\(a,b)(ﬂf —a)+ @|(a,b)(y —b)
And let

Az=z—c Arz=x—a Ay=y-—2>
So

af of
%ka,b)AIL‘ + @|(a,b)Ay

Az =
The per-unit form of Sensitivity Analysis is given by

dz _Of dr x 8f dyy
= abif |(ab77

2 0z T z Yy z
Substituting
dz 8f dra 0f dy b
7 |(a b) z C |(a b)
Yy c

7.4 Small Signal Modelling
7.4.1 State Space Equations

dl‘l
- = a1173 + ajows + biyug + bious
d.’ﬂz
- a917% + agowa + barus + boguy

7.4.2 Output Equations
Y1 = c1121 + c12®2 + di1ur + diaus

Yo = €171 + C22%2 + doa1uy + dasus
7.4.3 State Variable Equilibrium Condition
% _ 0] _ [f1(z10, 20, U1, U2)
s 0 f2(210, 220, U1, Ua)
7.4.4 Small Signal Model in Matrix Form
dat .
ary t)
it | = +B [1{ i }
EARA R
Where Jy and By are Jacobian Matrices

7.4.5 Output Equilibrium Point

g1(x10, 20, U1, Uz) _ Y0
92(x10, 20, U1, Uz) Y20



7.4.6 Output Small Signal Equation

] =[] +me [

Where J; and By are Jacobian Matrices
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8 Double Integrals

8.1 Double Integrals over Rectangular Regions

A function f defined on a rectangular region R in the xy-plane is integrable on R if

lim Zf ok, Ui A Ay

exists for all partitions of R and for all choices of (z,y;) within those partitions. The double
integral of f over R is

J] 1wmaa- B, > flei i) Ay

8.2 [Iterated Integrals and Fubini’s Theorem

Let f be continuous on the rectangular region R = {(z,y) : a < z < b,c < y < d}. The double
integral of f over R may be evaluated by either of two iterated integrals:

| | ypaa= / ' / " flag)dady = / b / " fwy)dyda

8.3 Average Value of a Function over Rectangular Region

The average value of an integrable function f over a region R is

1
I= Area ofR /R f(w,y)dA

8.4 Double Integrals over General Regions

Let R be a region bounded below and above by the graphs of the continuous functions y = g(x) and
y = h(x), respectively, and by the lines x = a and = b. If f is continuous on R, then

[ st - / / h:) F (o, y)dydz

Let R be a region bounded on the left and right by the graphs of the continuous functions
x = ¢g(y) and = = h(y), respectively, and the lines y = ¢ and y = d. If f is continuous on R, then

J[ swaa= | ' /g :)) F (&, y)dady



8.5 Double Integrals over Polar Regions

Let f be continuous on the region R in the xy plane expressed in polar coordinates as R = {(r, ) :
0<a<r<ba<f<pf} where f —a < 27.

// flz,y)dA = / / f(rcos(8),rsin(8))rdrdd

For R={(r,0):0<g(0) <r <h(f),a<0<pj}

h(@)
// f(z,y)dA = / / (rcos(0),rsin(0))rdrdd
9(0)

8.6 Area of Polar Regions

h(6)
A= // dA = / / rdrdf

8.7
9 Triple Integrals

9.1 Triple Integrals in Rectangular Coordinates

// flz,y,2)dV = //g(m / f(z,y, 2)dzdydx

9.2 Average Value of a Function of Three Variables

- 1
I= Volume ofD //D @y, z)dv

9.3 Triple Integrals in Cylindrical Coordinates

h(0) (rcos0,rsin0)
// flz,y,2)dV = / / / f(rcosO,rsinb, z)rdzdrdd
g(o (rcos,rsinf)

9.4 Change of Variables for Common Coordinate Systems

Coordinates Variables
x Yy z r 0 p [0)
Cartesian T y z Va2 +y? tanTH(¥) 2?4y 422 cosTH(E)
Cylindrical 7 cos(6) 7 sin(6) z T 0 rcsc(f) cos™! (%)
Spherical psin(¢) cos(f) psin(@)sin(f) pcos(¢)  psin(e) 0 p ¢



10 Change of Variables

10.1 Jacobian Determinant/Matrix

Given a transformation T : z = g(u,v),y = h(u,v), where g and h are differentiable on a region of
the uv-plane, the Jacobian Determinant is

Juw) = 2@n) _ |56 Zgig _ @) 0y)  0lw) dly)
T Bu) |2 2] T f(w) av) — B(v) Blu)

Given a transformation T : x = g(u,v),y = h(u,v),z = p(u, v, w), where g,h and p are differen-
tiable on a region of the uv-plane, the Jacobian Determinant is

T
_ a(x,y,z) o i 6U &w)
J(u,v) = a(u, v, w) = gg; ggzg %((TZ)))

O(u) 9O(v) IO(w)

10.2 Change of Variables Integrals

//Rf(‘”’y)dA://Sf(g(uvv)’h(u,v))lJ(u,v)|dA

//D f(z,y,2)dV = //s Fg(w, v, w), h(w, v, w), p(u, v, w)|J (u, v, w)|dV

11 Surface Integrals

Let f be a continuous scalar-valued function on a smooth surface S given parametrically by r(u,v) =
(x(u,v),y(u,v), z(u,v)), where u and v vary over R = {(u,v) : a <u < b,c < v < d}. Assume also
that the tangent vectors

_Or <8x dy 8z>

YT 0w \Ou' du’ du
or or Oy 0z
=5 =50 30" 50

are continuous on R and the normal vector t, X t, is nonzero on R. Then the surface integral of
f over S is

//Sf(”f»yvz)ds = //Rf(x(uw),y(u,v),z(u,v)uu X to|dA

Surface Area = // 1dS = // 1]ty X ty|dA
s R

11.1 Surface Area



12 Curl and Circulation

Circ:yg F-Tds
C

F-Td
Cul = V x F — Jim $¢F T8
A—0 A

where A is the area enclosed by contour C'

0 0 0

CurIZVXF=<%,8—y,$

) s {002 o2 ,2))

13 Divergence and Flux

Fluxz&é F -nds
c

F-nd
Div—V.F = lim S "4
A—0 A

where A is the area enclosed by contour C'

o 0 0

DIV:V‘F:<%,@,£

> '<f(rf,y,Z)ag(w»va)»h(w7y’Z)>

14 Vector Identities

14.1 Dot Product
A-B=(A1,As,A3)- (B1,By,Bs) = AiB1 + AyBy + A3Bs

14.2 Cross Product

Ay Ay A
B, By Bj

A x B =(Ay,Ay, As) X (B1,B2,B3) =

14.3 Scalar Triple Product
A-(BxC)=B-(CxA) =C-(AxB)

14.4 Divergence/Curl Linearity
V. (A+B)=V-A+V.B
V- (A+B)=VxA+VxB

14.5 Second Derivatives
14.5.1 Source Free Field
V- (VxA)=0

10



14.5.2 Rotation Free Field
V x(V¥) =0

14.5.3 Scalar Laplacian
V- (VV) = V20

14.5.4 Vector Laplacian
V(V-A) -V x(VxA) =V4

15 Stokes Theorem

circ<F>:y§CF.dr=//g(vXF)-nds

16 Divergence Theorem

ﬁux(F)://sFmds:///D(V'F)dV

17 Useful Geometries
17.1 Normal Vectors

Normal for a sphere with equation 22 4 y? + 22 = p:

x
<Z ¥
2z z
Surface Explicit
Equation Normal Vector n Magnitude
Cylinder 2% + 9% = a? <zy,0> a
2 2 _ 2 :
Cone 224+ y? ==z <z L 1> V2
2 2 2 _ 2 ]
Sphere *+y*+z°=a <z ¥1> =
Paraboloid N <2x,2y,—1 > 1+4(22 +y?)

11




Surface

Cylinder
Cone
Sphere

Paraboloid

Parametric

Equation Normal Vector n = t, X t, Magnitude [t, X t,|
r =< acos(u),asin(u),v > < acos(u),asin(u),0 > a
r =< vcos(u),vsin(u),v > < vcos(u),vsin(u), —v > V2v
r =< acos(u) sin(v), asin(u) sin(v), acos(v) > r =< a?cos(u)sin’(v), a? sin(u) sin?(v), a? sin(v) cos(v) > a? sin(v)
r =< vcos(u),vsin(u),v? > < 202 cos(u), 2v? sin(u), —v > V1 + do?

18 Dirac Delta Distribution
8(%—@):{0 for x # a

oo forx=a

18.1 Dirac Delta Integrals

Area under the distribution is 1:

/_Z@(x—a)dle

/_La(x—a)da::/aooﬁ(w—a)dx:;

Spherical Coordinate Generalization:

Sampling/Shifting Property:

/ " @0 — a)dz = f(a)

19 Scalar Density Dirac Distributions

Shape Cartesian Spherical Cylindrical
Point p=Q3()(Y)d(z) | p= 3%
Infinite Line p=A(x)d(y) p= Ai(:)
Infinite Plane p=00(2)
Infinite Cylinder p=o0d(r—R)
Sphere p=00(r—R)

12




20 Vector Valued Flux Density Dirac Distributions

Shape Cartesian Spherical Cylindrical
Planar Sheet J = J.8(2)&
Line J = I5(2)5(y)2 J=10,
Cylinder (Axial) J=Jb(r— R)2
Cylinder (Circumferential) | J = J,[6(y + R) — 6(y — R)]2 J=J6(r—R)A

21 Divergence Theorem LHS Surface Integrals

Shape | Divergence Theorem LHS

Cylinder 2rrLf(r)
Line 2rrLf(r)

Plane 2Af(z), A = plane area

Sphere amr? f(r)

22 Stokes Theorem LHS Surface Integrals

Shape Stoke’s Theorem LHS
Solenoidal (Axial, 2) z2f(2)
Solenoidal (Circumferential, §) 27r f(r)
Toroidal (Donut) 277 f(r)
Plane (F || &,J | 2) 2z f(y)

23 Green’s Circulation Theorem

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a con-
nected and simply connected region R in the plane. Assume F = (f,g), where f and g have
continuous first partial derivatives in R. Then

¢F~dr:§l§fdx+gdy://@—gdfl
c c rOx Oy

13



24 Green’s Flux Theorem

Let C be a simple closed piecewise-smooth curve, oriented counterclockwise, that encloses a con-
nected and simply connected region R in the plane. Assume F = (f,g), where f and g have
continuous first partial derivatives in R. Then

%F-drzygfdy—gdacz//aff+@d14
c c rOT Oy

25 Trigonometry

25.1 Trig Identities
25.1.1 Half Angle Identities

1 — cos(2
sin?(z) = 7czb( z)

1 2
cos?(x) = 1+ cos(2z)

2

1-— 2
tan?(z) = 1= cos(22)

1+ cos(2x)

25.1.2 Double Angle Identities
sin(2z) = 2sin(z) cos(x)
cos(2x) = cos?(z) — sin’(x)
cos(2x) = 2cos?(z) — 1

cos(2z) = 1 — 2sin®(z)

25.2 Hyperbolic Trig

T _ -

sinh(z) = < 26

cosh(z) = #
fanh(z) = iif;}ﬁii))
esch (z) = @
sech (z) = cos}ll 5
—_——

14



25.3 Hyperbolic Trig Identities
sinh(—z) = — sinh(xz)
cosh(—z) = cosh(x)
cosh?(z) — sinh?(x) = 1
1 — tanh?(z) = sech?(z)
sinh(z + y) = sinh(z) cosh(z) + cosh(y) sinh(y)
cosh(z + y) = cosh(z) cosh(y) + sinh(y) sinh(y)

15



