
PARKore: Parallel, Asynchronous, Relaxed K-Core
Decomposition

by

Stephen Yang

A thesis submitted in conformity with the requirements
for the degree of Bachelor of Applied Science

Supervisor: Mark Christopher Jeffrey
University of Toronto

© Copyright 2024 by Stephen Yang

PARKore: Parallel, Asynchronous, Relaxed K-Core Decomposition

Stephen Yang
Bachelor of Applied Science

Supervisor: Mark Christopher Jeffrey
University of Toronto

2024

Abstract

k-core is one of many metric used in graph analysis. Across various scientific research,

k-core is applied as a descriptor of the importance of certain nodes in a network. Fast

algorithms to generate a k-core decomposition of a graph exist, but are difficult to

parallelize. Historically, k-core is thought to require a strict ordering of tasks for

correctness. As such, methods that rearrange task orderings are considered but not

performant in prior work. Most parallel k-core algorithms simply rely on bulk syn-

chronous parallelization, where work is divided between processors and synchronized

at common barriers. However, these types of algorithms can suffer penalties if work

is not divided evenly, or if the total amount of work is small.

We present PARKore, the first asynchronous, relaxed k-core decomposition. PARKore

enables relaxed scheduling of k-core tasks by building on top of the optimal peeling

algorithm, adding new state variables in order to track dependencies. We show that

PARKore handles priority inversions and order relaxation without issue. As a result,

PARKore allows for high work-efficiency when parallelized, as all threads working on

the algorithm can operate asynchronously from each other. We find that across six

benchmarks, PARKore has near state of the art performance with some improvements

for certain graphs.

i

Acknowledgements

I would first like to thank my supervisor, Mark Jeffrey, for his advice and guidance.

Prior to this thesis, I was predominantly interested in computer hardware and RTL

design. Mark introduced me to the field of parallel computing, where the interplay

of hardware and software is critical for optimizing performance. His endless patience

and productivity tips were integral to the completion of this thesis. I would also like

to thank Gil, who continues to astonish me with his ideas and advice. Gil introduced

me to k-core decomposition, provided the initial groundwork for this thesis, and was

always instrumental in guiding me back in the right direction.

Additionally, thank you to my girlfriend Jessica, who persisted with me through

all the late nights and work sessions. Finally, a big thank you to my mom for always

being there when I needed it.

ii

Contents

1 Introduction 1

1.1 k-core Motivation . 2

1.2 Performance . 3

1.3 Contributions . 3

1.4 Thesis Organization . 4

2 Background 5

2.1 k-core . 5

2.1.1 Peeling Algorithm . 6

2.2 Parallel k-core Algorithms . 9

2.3 Parallelization Approaches and Relaxation 12

2.3.1 Speculation . 12

2.3.2 Bulk Synchrony . 13

2.3.3 Relaxation . 13

2.4 Concurrent Priority Schedulers . 14

3 PARKore 15

3.1 The PARKore Algorithm . 15

3.2 Optimizations and Multithreading . 20

3.3 MultiQueues as Priority Schedulers 21

4 Evaluation and Results 23

4.1 Methodology . 23

4.2 Performance . 24

4.3 Cache Performance . 27

4.4 Priority Scheduler Overheads . 30

4.5 Sensitivity to MultiQueue Parameters 31

iii

5 Conclusion and Future Work 36

5.1 Future Work . 36

A Appendix 38

A.1 PARKore Code . 39

A.2 Sequential BZ Implementation . 53

A.3 MPKI for LLC Load and Stores . 58

iv

List of Figures

2.1 The k-core of an example graph. 6

2.2 An example of k-core decomposition. 8

2.3 A correct k-core decomposition solution. 8

2.4 An incorrectly solved k-core decomposition due to order relaxation. . 9

3.1 A snapshot of a k-core decomposition example after a yellow vertex

updates the central vertex at T0. 18

4.1 PARKore and Julienne speedup against work-efficient sequential im-

plementation. 25

4.2 Running time of PARKore and Julienne. 48h refers to 48 hyper-threads 26

4.3 Instruction count of all applications. 27

4.4 MPKI: LLC Load and Store misses across all graphs and applications. 28

4.5 Cache accesses and misses across all graphs and applications, normal-

ized to graph size n. 29

4.6 Time breakdown for PARKore using BMQ and MQIO. 31

4.7 Speedup: MQIO relative to best sequential. 33

4.8 Speedup: Bucket MQ (64 buckets) relative to best sequential. 34

4.9 Speedup: Bucket MQ (256 buckets) relative to best sequential. . . . 35

A.1 MPKI: LLC Load Misses. 58

A.2 MPKI: LLC Store Misses. 59

v

List of Tables

2.1 Work-inefficient parallel k-core algorithm runtime (s) results [17] . . . 11

2.2 Work-efficient parallel k-core algorithm results [39] 12

2.3 Published parallelization approaches for k-core 12

3.1 Data structures in PARKore . 16

3.2 State variables for vertex in example. Left: update hist. Right: Other. 19

3.3 Default MQ Parameters. 22

4.1 Overview of graph datasets . 24

A.1 State variable mappings . 39

vi

1. Introduction

Network structures pervade all aspects of society, from the structure of energy grids,

to cell organization in organisms, to social media networks. Insights into the charac-

teristics of these networks have enamored researchers for decades. For example, graph

analysis of social networks could inform how information (or disease) travels. To study

these networks, many metrics have been proposed, including graph density, shortest

paths, graph centrality [12], community detection [11], and more. One such method

is the k-core decomposition of a graph. The k-core of a graph is often employed as

a proxy for the most important set of nodes in the graph. Analysis using the k-core

of networks has various applications, such as explaining sudden state transitions in

statistical mechanics [25], extracting graph characteristics using graph mining [34],

modelling of disease transmission in societies [18], and revealing organization in the

brain [20].

However, as networks of interest grow, subsequent analysis calls for hugely in-

creased computational demand. On modern computers, high performance of pro-

grams is achieved by exploiting parallelism across various levels. Processors ex-

tract Instruction-Level Parallelism by executing independent instructions concur-

rently, while programs must be written by programmers to execute well on these

highly multithreaded processors. For k-core decomposition, fast algorithms do exist;

however, they do not parallelize well. Programs that parallelize well characteristi-

cally contain lots of separable data and independent instructions, which can be easily

divided into smaller tasks. Unfortunately for k-core decomposition, this is not the

case as the best sequential algorithms contain significant dependencies within the al-

gorithm itself. These dependencies also present themselves during runtime, varying

greatly with the input graph. Consequently, predictions to the dynamic schedule

are futile. In fact, k-core decomposition is currently known to be strictly scheduled

[39, 28], meaning a global scheduling order is required for the algorithm to complete

correctly.

1

CHAPTER 1. INTRODUCTION 2

1.1 k-core Motivation

Various research fields have applied k-core as a metric of node importance or inter-

connectedness. k-core as a graph metric appears in seemingly unrelated fields, where

graph nodes range from physical atoms [25, 6], to human cells [7, 13], or individual

people [37, 19]. Historically, k-core materializes in surprising ways across these ap-

plications: For example, in statistical mechanics, the sudden emergence (percolation)

of k-cores in a network of atoms can indicate sudden state transitions occurring only

for certain materials at certain densities [25].

Recently, breakthroughs in neuroscience have enabled modelling of the human

cerebral cortex as a graph with unprecedented fidelity. In one case, a selection of

66 designated anatomical subregions were taken, resulting in a graph of the human

brain with 998 regions of interest (ROI’s) [13]. Graph edges were experimentally

discovered using magnetic resonance imaging (MRI) and computer-based diffusion

MRI of a human brain. Using k-core on this neuronal graph, researchers found

that structural connections and functional interactions between cortex regions were

significantly correlated. In addition to mapping the cortex, connectivity mapping

using k-core has also been applied to Alzheimer’s disease research [7]. In patients

with Alzheimer’s, the k-core model of the brain loses nodes rapidly as the disease

progresses, signifying a loss of neural interconnections.

Social graphs are another domain where k-core appears. Modern media networks,

such as the Facebook social graph [37], Twitter (now X) [19] and Orkut, are frequently

modelled as graphs where edges correspond to relationships between between people

(nodes). In these social graphs, a node in a k-core suggests a high degree of impor-

tance. Conventional wisdom suggests that the most efficient spreaders of disease or

information in a society should be those who are most well connected (highest degree

in a graph) or most central; however, empirical evidence suggests that these optimal

spreaders are those located within a k-core [18].

As such, performance improvements for k-core decomposition is of interest not

only to parallel programming research, but to scientists across various fields. However,

due to the nature of k-core decomposition, current software and hardware struggles

to effectively parallelize this algorithm. We will discuss the reasons for this in the

following sections.

CHAPTER 1. INTRODUCTION 3

1.2 Performance

The peeling algorithm for k-core decomposition involves peeling away lower degree

vertices until only the kth core remains [4]. As a result, a strict ordering is required

for correctness in serial execution of k-core decomposition. This requirement extends

to parallel k-core implementations, and constitutes a large challenge in parallelizing

k-core [28]. Existing work towards this end groups into three main methodologies:

bulk-synchronous execution, speculative execution, and order relaxation [28]. Most

k-core literature focus on bulk-synchronous approaches, where work is partitioned

into private queues, and separate compute threads must synchronize with a barrier

to make global updates [24, 8, 9, 39]. However, the use of barriers can drastically

decrease performance: in some algorithms, as much as 90% of program run time

is spent on synchronization related overhead [30]. Additionally, barriers can induce

highly uneven work distribution. Even for state of the art k-core decomposition

algorithms, a significant portion of threads process as few as one vertex between

barriers [28]. Second, a major challenge for parallelizing k-core decomposition has

been increasing the ratio of useful work done across all threads relative to the total

work done by a sequential algorithm. Termed as work efficiency [5], this ratio is

a crucial performance metric that has only recently been optimized for k-core [9].

Traditional implementations of parallel k-core require roughly O(m + kmaxn) work,

while sequential implementations take O(m+ n) work [9].

In recent years, dependency analysis research has yielded algorithms with relaxed

schedulers which are now being applied to problems with strict ordering requirements

[3]. These algorithms exploit dependencies between tasks to enable out-of-order ex-

ecution. However, k-core is thought to require explicit global synchronization [39]

alongside strict ordering, thus there are no current implementations using relaxed

scheduling.

1.3 Contributions

We think that through scheduler dependency analysis [28] of the k-core algorithm,

a novel asynchronous parallel k-core algorithm (which forgoes barriers) can be im-

plemented in software. This thesis introduces PARKore: Parallel, Asynchronous,

Relaxed k-core decomposition. PARKore is a highly parallelizable, work-efficient,

k-core decomposition algorithm which challenges traditional notions on the ordering

requirements for k-core. The main contributions of this work include the formulation

of PARKore and evaluation of PARKore’s software implementation.

CHAPTER 1. INTRODUCTION 4

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 provides background on k-core, the

k-core decomposition problem, and motivation for k-core. Additionally, a review of

prior work in extracting parallelism from k-core is presented. A section on prior work

on concurrent priority schedulers is included. In Chapter 3 we present PARKore,

the first relaxed-scheduling, work efficient implementation of k-core. In Chapter 4,

we describe evaluation methods, and benchmark PARKore’s performance across 6

different graph datasets. Finally, in Chapter 5, we conclude and propose future

work.

2. Background

To begin, we introduce the notion of a k-core and its related definitions, such as

the coreness (the maximum core) of a vertex in section 2.1. Define a graph as G =

(V,E), where V refers to the set of it’s vertices, and E the set of edges connecting

vertices. For a graph G, the challenge of finding the coreness numbers of all vertices

is called the k-core decomposition of a graph. The Peeling algorithm is an optimal

work-efficient algorithm for k-core, and is described in 2.1.1. Yet, this algorithm is

challenging to parallelize, with previous attempts described in section 2.2. Lastly, a

short background on concurrent priority schedulers is presented in 2.4.

2.1 k-core

The term k-core was initially conceptualized in 1983 by two independent authors. The

first reference to k-cores was from Seidman as a metric to categorize the ”knittedness”

or cohesion of a social network [33]. Simultaneously, Matula and Beck independently

introduced the notion of k-linkages in a paper about smallest last ordering, and de-

scribed an O(V + E) algorithm to find k-linkages [22]. Although Matula and Beck’s

algorithm was for smallest last vertex ordering, their algorithm computationally yields

the k-core upon completion. Formally, we define the k-core of a graph G = (V,E) to

be:

Definition 1 (k-Core) For a graph G = (V,E), let H be a subgraph of G (a

portion of G). Let δ(v) be the degree of node v in H. Then, the k-core of H ⊆ G

is the maximal subgraph such that ∀v ∈ H, δ(v) ≥ k.

Alternatively, picture a k-core as nested subgraphs Hk of G, where all vertices in Hk

have at least k neighbors. When k = 1, the 1-core is trivially every connected set of

vertices, or equivalently the exclusion of all isolated vertices from G. Note that if G

is connected, then H1 ≡ G. Additionally, from the definition of k-core, any vertex u

in a k-core has at least k neighbors. As such, we can show that k-cores are nested:

vertex u ∈ Hk has δ(u) = k > k − 1, thus u ∈ Hk−1. A example of k-core on a graph

with k = 1, 2, 3 is shown in Figure 2.1.

5

CHAPTER 2. BACKGROUND 6

Figure 2.1: The k-core of an example graph.

Lets begin by defining the coreness of a vertex:

Definition 2 The coreness of vertex v ∈ V is the largest k for which v ∈ Hk.

Returning to figure 2.1, note the four yellow vertices in the middle. Despite the top

left yellow vertex having 5 total neighbors, it only has a coreness of 3, as two of its

neighbors are not part of a 3-core. In the left most column of red vertices, the middle

vertex has degree 3, but only has coreness 1 since not all of its neighbors have 3 cores.

Because of the nesting property, it is sufficient for k-core decomposition algorithms to

compute the coreness numbers of each vertex v ∈ V . Any k-core of graph G = (V,E)

can be simply reproduced from the coreness numbers by passing over each vertex

in G and checking if all v with coreness > k belong in Hk. We investigate k-core

decomposition algorithms in the following sections.

2.1.1 Peeling Algorithm

Building on the work of Matula-Beck, Batagelj and Zaversnik implement their k-core

decomposition algorithm, using priority queues, which runs in the same time bounds

O(V +E) [4]. The BZ algorithm, shown in Algorithm 1, repeatedly ”peels” the lowest

degree vertices, until no vertices remain.

CHAPTER 2. BACKGROUND 7

Algorithm 1 BZ k-core Decomposition

1: function BZQ(cores)

2: Compute degrees of vertices

3: Order vertices V in increasing order of degree

4: for v ∈ V in order do

5: core[v] := degree[v]

6: for u ∈ v.neighbors do

7: if degree[u] > degree[v] then

8: degree[u]−= 1

9: Reduce priority of u by 1

10: end if

11: end for

12: end for

13: end function

In the BZ algorithm, an initialization is performed where vertices are ordered in

ascending order by degree (lines 2-3) into a set V . Then, each iteration of the loop

(line 4), the lowest degree vertex currently in V is popped (line 5). Then, a peeling is

performed for all of v’s neighbors (line 6). If any neighbor u of v’s has a higher degree,

u’s degree is decremented and it’s priority reduced by 1 (lines 7-9). Examining the

BZ algorithm, we note that the algorithm maintains two invariants:

1. Whenever an vertex v is popped (line 5 in Algorithm 1), v necessarily has the

lowest degree in the set V .

2. At any iteration, the degree of an unpopped node in the graph is an upper bound

on it’s coreness. Accordingly, when a vertex u is removed (i.e. it’s degree drops

below the current lowest degree vertex v), the degree of u at removal time is u’s

coreness.

Invariant 1 is held when V is a priority queue, where a dequeueMin() function

would be used to pop a lowest degree vertex. Invariant 2 can be shown given a

priority queue is used: If a vertex u has a lower priority than the lowest vertex

v ∈ V , then no vertex w ∈ V can cause a coreness update, as all coreness updates

are induced by lower degree vertices. As such, k-core decomposition requires a strict

ordering where the scheduling of vertices in the algorithm is fixed for correctness.

As an example, consider the graph in figure 2.2. The correct ordering is to pop red

vertices first, which update the center blue vertex and top right orange vertex. Then,

CHAPTER 2. BACKGROUND 8

the top right vertex has a new degree of 1, so it is popped and consequently updates

the center orange vertex.

Figure 2.2: An example of k-core decomposition.

Ultimately, the graph example in figure 2.2 produces the result shown in figure 2.3.

The series of updates resulting in this solution are depicted using arrows. However,

what happens if instead of an algorithm accidentally started by popping not either

of the red vertices, but one of the yellow (degree 3) vertices?

Figure 2.3: A correct k-core decomposition solution.

CHAPTER 2. BACKGROUND 9

Take that the top right yellow vertex is decremented at the beginning of the al-

gorithm. In this case, the yellow vertex (degree 3) updates the original blue vertex

(degree 5), as indicated by the red arrow in figure 2.4. Next, the algorithm behaves

as before, yielding two more decrements to the previously blue vertex for a total of

3 updates as indicated by black arrows. In this scenario, the originally blue vertex’s

degree has dropped so significantly that it now updates its yellow neighbors (orange

arrows), causing the coreness numbers for every vertex in all collapse to 1. A repre-

sentation of this incorrect result is shown in figure 2.4, where every vertex now has

coreness 1 due to execution with an improper priority ordering.

Figure 2.4: An incorrectly solved k-core decomposition due to order relaxation.

As evident from this example, the scheduling order is crucial to ensure the cor-

rectness of the decomposition algorithm. Current software and hardware struggle to

parallelize for this reason, as the scheduling order dictates a global structure between

threads that would prefer to work alone. Specific challenges in parallelizing k-core

manifest in existing work, which we will explore in the next section.

2.2 Parallel k-core Algorithms

Returning briefly to the priority queue based BZ algorithm, observe that every vertex

is popped once and only once: each edge e ∈ E from u to v is traversed at most twice

(once if u is popped, once if v updates u). This is a consequence of using priority

updates (dequeueMin) as there is no push to add elements to the priority queue. In

the BZ algorithm, |V | passes are required, with up to O(E) edge processed in total.

CHAPTER 2. BACKGROUND 10

As such, the BZ algorithm requires O(m + n) work, where m = |V | and n = |E|.
This result forms a baseline which all parallel implementations are measured from.

Montresor et al. implemented a parallel k-core algorithm by partitioning a graph

into memory onto hosts in a distributed compute systems [24]. Each processor oper-

ates on its local subset of G. During an iteration of the distributed algorithm, each

node produces an estimate of its coreness, which is message-passed to relevant neigh-

bor processors. The neighbor processors utilize updated coreness estimates, repeating

until convergence across all systems. In theory, this algorithm requires O(kmax · n)
work [24]. However, for certain graphs such as one with a long ”chain” of equal degree

nodes, the practical worst case work could be as high as O(m× n), since n iterations

are needed, and each iteration could take O(m) time [17].

ParK, implemented by Dasari et al., is the first parallel algorithm to run in O(kmax·
n + m) work [8]. In ParK, the k-core update is split into two parts: a scan phase,

followed by processSubLevel(). In the scan phase, the graph G is traversed, and all

nodes with degree equal to k are added to the current level. In processSubLevel(),

every vertex in the current level k is peeled, with an added optimization to add

k + 1 degree nodes to the next level. The work for scan phase is O(kmax · n), since
there are kmax levels with n checks per level. processSubLevel() additionally takes

O(m) work, since each vertex is processed exactly once (when its degree is equal to the

current level k). Combined, the work of the ParK algorithm is O(kmax ·n+m). When

parallelizing, the scan phase is trivially parallelized: n nodes are simply distributed

amongst t threads. Similarly, parallelizing processSubLevel() involves distributing

the work equally among the t threads. Critically, between the scan and process

phases, barriers are constructed which all threads must synchronize to in order to

progress. ParK, therefore, represents an example of bulk-synchronous parallelization.

Building off of ParK, Kabir and Madduri attempted to reduce overheads stemming

from barrier and synchronization overhead in their PKC algorithm [17]. In essence,

PKC removes the barrier between scan and process phases by instead instantiating

thread-level buffers, which each hold n/t nodes of G. Since coreness updates are

atomic decrements, it is sufficient for each thread in PKC to only scan cores which

are within its own thread-level buffer. The authors note that the sequential work

for PKC is the same as ParK (O(kmax · n + m)). Additionally, a synchronization

barrier between process and scan (at the end of each iteration) is still required. A

comparison of the following work-inefficient algorithm runtimes for an selection of

graphs is shown in Table 2.1. These results are reported by [17] as runtime in seconds

for the three implementations, on a quad-socket 32 thread Intel Xeon system with

CHAPTER 2. BACKGROUND 11

512GB of memory.

com-orkut soc-LiveJournal1 soc-friendster indochina-2004 webbase-2001
PKC 2.38 0.87 31.32 1.77 5.47
ParK 3.49 1.44 35.51 10.45 52.70
MPM 9.22 4.20 386.74 3.47 46.95

Table 2.1: Work-inefficient parallel k-core algorithm runtime (s) results [17]

On average, PKC outperforms both ParK and MPM on most graphs. Additionally,

the authors find that BZ outperforms both ParK and MPM when run serially, but

PKC has better single threaded performance than BZ [17].

In 2017, a major shift occured in the landsdcape of parallel algorithms research.

Julienne was able to achieve a work-efficient, parallelized implementation of k-core [9].

The Julienne implementation of k-core utilizes buckets for vertex degrees, removing

the need to scan G or create a thread-local portion of G. Consequently, there is also

no need to synchronize all threads at the end of each iteration, like in PKC, since

elements can be independently (atomically) inserted or removed from buckets. The

Julienne k-core requires O(m + n) expected work with O(ρ log n) depth, where ρ is

the peeling-complexity, or number of steps required to peel the graph completely [9].

Following Julienne, Ordered GraphIt bolstered performance further by replacing

the priority update function with a histogram (vector) based update [39]. In Julienne,

after each update to a specific vertex v’s bucket, any consecutive accesses to v requires

a function call and further computations, which may also suffer from contention with

other threads if v has a high degree. Ordered GraphIt subverts these overheads using

lazy bucketing with a fixed priority decrement, suitable for k-core as updates can

only apply constant unity decrements to coreness. Consequently, contention is also

avoided on vertices that have high degree [39].

A comparison between GraphIt, Julienne, and prior work Ligra, is shown in Table

2.2. Note that while Ligra does not constitute a work-efficient implementation, the

GraphIt and Julienne authors also benchmark their code against Ligra as a baseline,

with significant speedups. Runtimes are computed on a dual-socket, 24 core (48

hyper-thread) Intel Xeon system with 127GB of DDR3-1600 memory [39].

As shown in Table 2.2, Ordered GraphIt outperformed Julienne in all graphs for

k-core, although for many graphs the speedup was marginal. Both Ordered GraphIt

and Julienne outperformed the work-inefficient Ligra by a significant margin. Addi-

tionally, when compared to the results in Table 2.1, the work-efficient implementations

outperform prior methods for parallel k-core algorithms.

CHAPTER 2. BACKGROUND 12

com-orkut LiveJournal1 Friendster Twitter RoadUSA
Ordered GraphIt 1.634 0.745 14.423 10.294 0.305

Julienne 1.62 0.752 14.6 10.5 0.327
Ligra 8.09 5.99 324 225.102 1.76

Table 2.2: Work-efficient parallel k-core algorithm results [39]

Despite their performance, Ordered GraphIt and Julienne still remain rooted in

the class of bulk-synchronous algorithms: Bucketing implementations still require

threads to arrive at barriers between executing work at different priority levels. Is

it then possible to extract more parallelism in k-core by doing work across priority

levels?

2.3 Parallelization Approaches and Relaxation

Even with the advent of work-efficient, parallelizable k-core decomposition algorithms,

we believe there is still significant room for unlocking parallelism in k-core. Currently,

there are three main approaches for parallel execution (scheduling) of sequential tasks

while maintaining priority ordering: speculation, bulk-synchrony, and relaxation. A

grid of existing ideologies for applying parallelism to priority scheduled algorithms is

shown in table 2.3.

Speculative Bulk-Synchronous Asynchronous
Software Infeasible [8, 17, 24, 35, 9, 39] Unexplored
Hardware [15] [2, 23] [28]

Table 2.3: Published parallelization approaches for k-core

2.3.1 Speculation

Speculative execution can enable execution of ordered algorithms with strict priority

[14, 26], by speculating when a task can be executed out of order, and rolling back on

incorrect speculations. In practice, software speculation incurs significant overhead

penalties which greatly outweight the potential benefits [39]. For speculation to work,

proper rollback mechanisms supporting precise state recovery need to be implemented,

which are simply not performant in software. Hardware solutions have been proposed

to unlock parallelism by creating the aforementioned rollback mechanisms and precise

state structures, using custom hardware [15, 28]. However, due to costs associated

with hardware manufacturing, these solutions have yet to be built.

CHAPTER 2. BACKGROUND 13

2.3.2 Bulk Synchrony

Bulk-synchronous execution involves bucketing equal priority tasks, and executing

them in parallel. Since all items share the same priority, they can be executed in any

order. Additionally, these tasks are required to synchronize before any items with

different priority can be processed.

As discussed in section 2.2, software bulk-synchronous approaches are common

[8, 17, 24, 35], but suffer from significant drawbacks. Namely, the use of barriers can

exacerbate workload discrepancies between threads, resulting in highly uneven work

distribution. For example, as much as one third of all barriers process a single vertex in

certain k-core applications [28]. Further, in shared memory systems, synchronization

overheads emerge when multiple threads write to the same memory address. Even

when atomics are used (or alternative lockless methods), this can result in undesirable

overhead [17]. Hardware bulk-synchrony is also possible, such as the distributed

computing approach taken by [24]. Recently, the use of GPU’s in vectorizing k-core

has enabled performant hardware bulk-synchronous implementations to expose SIMD

(Single Instruction, Multiple Data) parallelism [23, 2]. However, these suffer from the

same restrictions as software bulk-synchronous algorithms.

2.3.3 Relaxation

Relaxed approaches allow schedulers to relax the priority order, distributing tasks

with varying priorities across processors. However, relaxation forfeits guarantees that

task ordering will match work-efficient task orderings. As such, relaxed programs

represent a compromise between parallelism and work-efficiency. Recently, Alistarh

et al. applied relaxed scheduling to iterative algorithms such as maximal indepen-

dent set (MIS) [3]. Using a relaxed scheduler, Alistarh et al. was able to achieve

O(n + poly(k)) work when compared to exact schedulers, where k is a relaxation

factor. Somewhat unintuitively, the extra poly(k) work is not proportional to size of

the graph, suggesting a possibility for amortization of the scheduler cost with suffi-

cient graph size or parallelization. Experimental results validated this, with better

performance due to the scalability of the relaxed scheduler despite poly(k) additional

work.

We believe that through scheduler dependence analysis, similar relaxation tech-

niques can be brought into a k-core algorithm, while maintaining work efficiency.

This thesis explores a software asynchronous (relaxed) approach, appearing as the

previously untouched territory in table 2.3.

CHAPTER 2. BACKGROUND 14

2.4 Concurrent Priority Schedulers

Priority scheduling and associated data structures (e.g. a priority queue) are in-

dispensable for algorithms across various domains. Beyond k-core, other algorithms

such as Set Cover [16], Greedy Maximal Independend Set (MIS) [3], and Residual Be-

lief Propagation [10] also benefit greatly from priority scheduling. However, priority

queues are less efficient at higher core counts due to contention between threads [21].

Prior work in Concurrent Priority Schedulers (CPS) have produced the MultiQueue

[31, 29, 38], which is an array of sequential priority queues. Each MultiQueue (MQ)

contains c · p priority queues, where c is a tunable parameter, and p is the number

of threads. Each of the c · p queues is protected by lock access, meaning at most p

queues can be locked at once. Given c > 1, finding an unlocked queue is guaranteed.

The key insight behind MQ’s is that compared to a single PQ, the MQ enables

O(log n) insertion with minimal overheads for queue selection (if c > 1) and locking

in a multithreaded use case. As such, insertions are incredibly efficient as threads do

not need to contend with each other. On the other hand, pops from the MQ are not

guaranteed to return the global highest priority, but instead approximates on average

a high priority element by selecting a maximal priority element from a small number

of queues. In section 3.3, we apply a variant of the MultiQueue CPS to the PARKore

algorithm.

3. PARKore

First, we introduce PARKore in section 3.1, motivated by the example given in section

2.1. Moreover, we provide insight into the key invariant of the PARKore algorithm

and its implication on relaxation. Then, optimizations and multithreading techniques

used in the software implementation of PARKore are provided in section 3.2. Lastly,

in section 3.3 we describe the CPS used in PARKore, which is a variant of the Mul-

tiQueue which builds on top of the Bucket Queue structure.

3.1 The PARKore Algorithm

To motivate the PARKore algorithm, we first define key structures that allow PARKore

to operate with any relaxation in the schedule. These key structures act as state vari-

ables for every vertex in the input graph G. Table 3.1 shows the state variables for

a vertex v. The size column indicates the size overhead of the state variable relative

to the underlying node representation. For example, if graph nodes are represented

using 32b of data, then estimated core would also require 32b of data. Note that

v.e refers to the set of neighbors of v.

15

CHAPTER 3. PARKORE 16

Name Size Description

current core 1 Current coreness of vertex v

update hist |v.e| update hist is initialized as an array of size v.deg+1, and

represents a histogram of incoming edge visible core from

v’s neighbors. At termination, the coreness of v is equal to

the H-index of update hist.

visible core 1 The coreness state of v visible to v’s neighbors. Alterna-

tively, visible core can be interpreted as the current low-

est estimated coreness of v. Initialized to a large number

(i.e. n).

ecp 1 The number of equal core predecessors. An equal core pre-

decessor is an update from neighbor u to v, occuring when u

had v’s current core, which speculatively causes v’s core-

ness to be reduced. ecp> 0 suggests a priority inversion

occured, and a subsequent decrement to v’s coreness is ig-

nored until ecp= 0.

Table 3.1: Data structures in PARKore

Pseudocode for PARKore is provided in algorithm 2. Initially, current core,

ecp, update hist and visible core are initialized according to their descriptions in

Table 3.1 on a per-vertex basis, as seen in lines 2-6. Initially, all elements in G are

inserted into the PQ on line 7. Then, the algorithm loops indefinitely (lines 41-43),

exiting when the PQ is empty (lines 12-14). For each loop, a vertex v is dequeued

from the PQ. Lines 16-18 check if the vertex v has an update, and proceeds to the

next dequeue if not. Crucially, the if statement at line 18 also evaluates to true if

vertex v has never been popped before. If v has been updated (or is being visited for

the first time), also update the visible core of v. Next, for every neighbor u of v,

we first check if updates are possible (if v’s coreness is less than u’s degree). If so,

lines 22-23 update the update hist arrays of u, representing an update from v to u.

Lines 24-31 handle coreness updates (decrement to current core), updates to ecp,

and priority updates via decrementMin. The final parallel C++ PARKore code can be

found in appendix A.1.

CHAPTER 3. PARKORE 17

Algorithm 2 PARKore
1: function init(P, G)

2: for v ∈ G.V do

3: current core[v] = v.deg

4: ecp[v] = 0

5: update hist[v] = [0]*v.deg + [v.deg]

6: visible core[v] = n

7: P.push(v)

8: end for

9: end function

10:

11: function PARKore Run(P, G)

12: if P.empty()then

13: return

14: end if

15: v = P.dequeueMin()

16: old core = visible core[v]

17: est core = current core[v]

18: if old core != est core then

19: visible core[v] = est core

20: for u ∈ v.neighbors do

21: if est core < u.deg then

22: update hist[u][old core]−− ▷ unseen bounds check on old core here

23: update hist[u][est core]++

24: if old core >= current core[u] and est core < current core[u] then

25: if ecp[u] > 0 then

26: ecp[u]−−
27: else

28: current core[u]−−
29: ecp[u] = update hist[u][current core[u]]

30: P.decrementMin(u)

31: end if

32: end if

33: end if

34: end for

35: end if

36: end function

37:

38: function PARKore(G)

39: P = PriorityQueue

40: init(G)

41: while true do

42: PARKore Run(P, G)

43: end while

44: end function

CHAPTER 3. PARKORE 18

To demonstrate PARKore in action, lets revisit the k-core decomposition example

in figure 2.2. The incorrect solution shown in figure 2.4 arose when a yellow vertex

was prematurely dequeued, and subsequently dropped the blue vertex’s coreness.

Consider a point T0 in the algorithm just after the yellow vertex dequeues and updates

the blue vertex, but no other vertex has dequeued. A snapshot of the graph at T0 is

depicted in figure 3.1.

Figure 3.1: A snapshot of a k-core decomposition example after a yellow vertex
updates the central vertex at T0.

As the example progresses, we can track the state variables for the central (previ-

ously blue) vertex in table 3.2. Start and end indicate the begin and completion of the

main loop (lines 41-43 in algorithm 2). The red text indicates the index corresponding

to the central vertex’s current coreness, as a position within the update hist array.

Alternatively, the red element in the table is also the number of equal core predeces-

sors at the current core of the central vertex. Finally, note that visible core is

initialized to a large number, defaulted to n, since the max degree of any node cannot

be larger than n.

The first row of table 3.2 shows initialization of state variables. Then, at T0 the

yellow vertex dequeues and causes an update to the central vertex, represented as

an increment in index 3 of update hist, as the update source was a core 3 vertex

(yellow vertex). Consequently, the current core is also decremented at this time.

T1 represents the cycle after the bottom left red vertex decrements and causes an

update to the central vertex. As a result, an increment in index 1 of update hist

CHAPTER 3. PARKORE 19

Time 0 1 2 3 4 5
start 0 0 0 0 0 0
T0 0 0 0 1 0 0

...
...

...
...

...
...

T1 0 1 0 1 0 0
...

...
...

...
...

...
T2 0 2 0 1 0 0
Tdq 0 2 0 1 0 0
end 0 2 0 1 0 0

Time current core visible core ecp

start 5 8 0
T0 4 8 0

...
...

...
T1 3 8 1

...
...

...
T2 3 8 0
Tdq 3 3 0
end 3 3 0

Table 3.2: State variables for vertex in example. Left: update hist. Right: Other.

is applied, and current core is decremented again. At time T2, the (previously)

orange vertex to the right of the central vertex dequeues, and applies its update.

This vertex applies an increment in index 1 of update hist, but when it goes to

decrement the current core of the central vertex, it finds it cannot. This is because

ecp was previously set to 1 at time T1, as indicated by the red 1 in update hist.

As such, ecp is decremented instead of the coreness value. Lastly, the central vertex

dequeues at Tdq, and updates it’s own visible core, wrapping up the algorithm

loop. At this point, the PQ is also empty, and we see that the coreness of the central

vertex is three - matching the correct solution shown in figure 2.3.

We have thus shown that PARKore can handle the case when higher priority

elements (yellow vertex with priority=3) are processed before lower priority elements.

The key insight that allows PARKore to handle such inversions is the ecp state

variable, which was decremented at time T2 instead of the current core. Specifically,

PARKore maintains the following invariant in each iteration:

current core[v] = v.deg−
current core[v]−1∑

i=0

update hist[v]− ecp

Equivalently, this invariant can be rearranged as follows:

v.deg− current core[v] =

current core[v]−1∑
i=0

update hist[v] + ecp

Observe that the left hand side constitutes the sum of updates to a vertex v’s coreness.

Then, the invariant maintains that all updates which have cause a vertex’s decrement

originates from one of two sources. First, updates from a lower degree vertex tracked

in update hist. Or second, updates from vertices with equal coreness that popped

CHAPTER 3. PARKORE 20

before v but now could be reordered after v without loss of correctness. Further-

more, since v.deg is constant, PARKore’s invariant ensures that any contributions to

decrementing v’s coreness are matched by ecp, effectively blocking decrements to v’s

coreness until there are no more equal core predecessors.

As a result, PARKore is resilient to dequeue’s in any order, enabling threads

to work without needing barrier based synchronization or equal priority tasks. In

essence, PARKore enables threads to work asynchronously on tasks which need not

have equal priority to tasks in other threads.

However, PARKore’s state variables are shared between threads, which could

also apply asynchronous contention as multiple threads attempt to load data from a

shared memory location. Also, PARKore has a large critical section (lines 21-33 in

algorithm 2) which requires locking. We describe optimizations to reduce atomic and

lock overheads, as well as enable multithreading in section 3.2.

3.2 Optimizations and Multithreading

First, we pack all state variables into 64b structs, aligning with 64b cache lines com-

mon in modern CPU’s to guarantee only the first memory miss per access to more than

one state variables. We also reduce unnecessary pointer dereferences in update hist,

by compressing update hist into Compressed Sparse Row (CSR) format [32]. As

such, only one array index is required, as opposed to two dereferences using the 2D

arrays method.

Although previously unmentioned, the comparison and subsequent write on lines

18-19 is implemented as a Compare and Swap (CAS) using C++20 offerings, to ensure

that threads operating on a vertex v correctly write to shared memory (and avoid

missing updates to v from other threads). Additionally, to lock the critical section

in lines 21-33 of algorithm 2, we avoid mutex locks and instead opt for atomic based

locks. We implement both Test and Test and Set (TTAS) locks and Reader/Writer

(RW) locks, with the reader locks securing the main critical section, and updates

accuumulated and deferred to a writer locked section occuring after a vertex v is

dequeued. We find that the RW lock outperformed TTAS by a factor of 5x across

graphs, and is therefore chosen as the default locking structure in PARKore.

To run PARKore, we utilize std::thread, with each thread sharing a common

priority scheduler, graph memory and state variable arrays. Lastly, note that the

initialization and run functions in algorithm 2 share the same inputs. We parallelize

both portions by dividing initialization amongst all threads, which share a single

global barrier to ensure proper synchronization of the state variables. No other bar-

CHAPTER 3. PARKORE 21

riers are used in PARKore.

3.3 MultiQueues as Priority Schedulers

Recall that the original insight of the BZ algorithm [4] is that utilizing a priority

queue limits the total number of pops to O(V), and updates to O(2E). Despite

PARKore’s resilience to priority inversions and ability to schedule in a relaxed manner,

applying an optimal ordering still results in lower overall dequeues and updates,

and higher work-efficiency. To this end, PARKore utilizes a Concurrent Priority

Scheduler (CPS) which enables PARKore to have work-efficiency, as the priority

scheduler approximates a global priority ordering. Explicitly, we apply a Bucket

MultiQueue as well as a base MultiQueue to PARKore, benchmarking them against

each other and choosing the more performant option. The MultiQueue (MQ) utilizes

heaps for the underlying priority queue, with an interface for push/pop (no priority

updates). We refer to this MQ as the MQIO (MultiQueue Input/Output).

The Bucket MultiQueue (BMQ) is a novel idea, which combines the array of PQ

structure of a MQ, but switches out the underlying datatype. Instead of using a heap

(priority queue), the BMQ utilizes a bucketing structure, akin to the buckets found

in Julienne [9]. This reduces queue overheads by cheapening access to the underlying

data. The BMQ shares the same interface as the MQIO.

Both the MQIO and the BMQ have tunable parameters which can effect dynamic

runtime performance. Both MQ types have tunable number of queues, batch enqueue

size, and batch dequeue size. Batching involves reserving two thread-local buffers (one

for push, one for pop) and writing to these buffers in push or pop calls. When one of

the thread-local buffers fills up, all of its tasks get sent to the MQ in bulk. Batching

has previously been shown as an optimization for MultiQueue and its variants [29].

We investigate the dynamic effects of batch sizes for various graphs, and report these

results in section 4.5

Additionally, the BMQ has two additional parameters over the MQIO. These are

the number of buckets, and a delta parameter. The delta parameter dictates how a

priority id is shifted into bucked id, commonly expressed as

IDbucket = priority >> delta

Where >> is the bitwise right shift operator. For example, delta = 0 implies that pri-

ority id is directly used to index into buckets. A list of default MultiQueue parameters

is shown in table 3.3.

CHAPTER 3. PARKORE 22

MQ Parameter BMQ Default MQIO Default
c 4 4
Num Queues 192 192
Batch Deqeue Varying (See section 4.5) Varying (See section 4.5)
Num Buckets 64 N/A
Delta 0 N/A

Table 3.3: Default MQ Parameters.

4. Evaluation and Results

We evaluate PARKore on six distinct benchmark graphs. First, we report the hard-

ware platform and software framework used to evaluate PARKore. We find that

PARKore matches state of the art performance on certain benchmarks, and inves-

tigate PARKore’s performance on other benchmarks. Some suggestions for future

work and optimizations are proposed from analysis of cache performance and appli-

cation parameters. Finally, we characterize PARKore’s performance sensitivity to

MultiQueue parameters and other performance optimizations.

4.1 Methodology

All implementations of PARKore are written in C++20 and compiled with gcc ver-

sion 11.4.0, with -O3 optimization. Threaded implementations are written using

std::thread and compiled with -pthread. We use the Ligra [35] source code for

loading adjacency graphs formatted in PBBS style [36]. For compiling Ligra and

Julienne applications, we use OpenCILK 2.1 with clang version 16.06. Note that

Ligra is also compiled with C++14 and -O3 optimization. Since Ligra was originally

written for use with Cilk Plus, certain modifications were required to the original

Ligra source code to facilitate the switch to OpenCILK 2.1. Internally, Ligra stores

loaded graphs in Compressed Sparse Row (CSR) format [32], giving a base space

usage of O(E) for all applications.

Experiments are conducted on a 24-core (48-thread) shared workstations (ug253)

hosted by the University of Toronto. This workstations contains two 2.1GHz Intel

12-core Silver 4310 Xeon processors in a two socket configuration, with 256GB of

main RAM and Intel two-way hyper-threading. Cumulatively, the workstation has

1.8MB of L1 cache, 30MB of L2 cache, and 36MB of L3 cache. All experiments were

run on 48 threads unless otherwise specified.

Graphs are chosen based on size and availability and are described in table 4.1.

Predominantly, we chose road graphs and social network graphs. The social network

graphs we used follow a power-law distribution, where most vertices have a moderate

23

CHAPTER 4. EVALUATION AND RESULTS 24

number of neighbors and a few vertices have many neighbors. Both graph data size

and characteristics impact algorithm performance. Certain large graphs, such as

Hyperlink, are massive enough to eclipse the available capacity in Last Level Cache

(LLC), requiring cache misses and retrievels from lower level cache or memory during

dynamic execution. On the other hand, the USA roads has a maximum degree of nine,

with the majority of nodes having only degree four (representing intersections which

usually intersect four roads). As a result, many vertices bin into the same priority

level and could implicate performance trends for bulk-synchronous programs. For

k-core, we additionally ensure all graphs are symmetric. Note that in table 4.1, n

denotes number of nodes and m number of edges.

Graph n m highest degree

Youtube 1157827 5975248 28754

Orkut 3072626 234370166 33313

USA Roads [1] 23947347 58333344 9

RMat 33554432 398555100 16417

Twitter [19] 41652230 2405026390 2997487

Hyperlink2012 [27] 101717775 3880015728 3032590

Table 4.1: Overview of graph datasets

Default BMQ and MQIO parameters are given in table 3.3. Based on the sen-

sitivity studies (section 4.5), we chose MQIO and BMQ parameters for each graph

independently, and utilize those parameters for the results in section 4.2.

4.2 Performance

Fig 4.1 compares the performance of PARKore and Julienne for both types of Multi-

Queues (BMQ and MQIO). Results are shown as speedup (see Def.3) versus the best

performing sequential BZ peeling algorithm. Our implementation of the BZ algorithm

can be found in section A.2.

Definition 3 (Speedup)

Speedup =
Sequential Execution Time

Parallel Execution Time

We find that in general, PARKore using the BMQ outperforms the MQIO. This

indicates that the bucket structure performs well in k-core, and is able to reduce

enqueue/dequeue overheads as compared to a min-heap or alternative priority queue

CHAPTER 4. EVALUATION AND RESULTS 25

datatype. Additionally, both versions of PARKore outperform Julienne on Orkut and

Youtube, with as much as 1.8x speedup on Orkut. For the USA roads graph, Julienne

is almost 2x faster than PARKore. We attribute this behaviour to the low number

of buckets for roads graphs, where almost every vertex fits into a single bucket, and

the Julienne’s relatively low cost when processing tasks in a single bucket.

Figure 4.1: PARKore and Julienne speedup against work-efficient sequential imple-
mentation.

We find that Julienne outperforms PARKore on larger graphs, such as Twitter

and Hyperlink; however, examining the scaling plots yield interesting features. figure

4.2 compares the performance of PARKore (with both MQ types) and Julienne as the

system scales from 1 to 48 threads. At high thread counts (where hyper-threading

is used extensively), Julienne’s performance degrades relative to peak core counts,

whereas PARKore maintains scaling. We suspect that this is due to compounded

synchronization effects suffered by bulk-synchronous applications when CPU pipelines

are completely multithreaded. figure 4.2 shows that PARKore’s scaling bottoms out

only on the youtube graph, suggesting further analysis is required. As such, one topic

for future work is to examine PARKore’s scaling performance on higher core counts.

CHAPTER 4. EVALUATION AND RESULTS 26

Figure 4.2: Running time of PARKore and Julienne. 48h refers to 48 hyper-threads

figure 4.3 shows the instruction count (IC) for all applications across all graph

benchmarks. Even though PARKCore outperformed Julienne in 2 benchmarks, we

note that Julienne’s IC is actually higher than PARKore for most graphs. One ap-

parent source of error is in the differences between build systems for Julienne (clang)

and PARKcore (g++).

CHAPTER 4. EVALUATION AND RESULTS 27

Figure 4.3: Instruction count of all applications.

However, IC alone is insufficient in informing performance differences between

Julienne and PARKore. As a further analysis, we look at the cache performance of

PARKore, as the state variabels in the PARKore algorithm are suspected to con-

tribute a significant memory overhead that has implications for performance.

4.3 Cache Performance

We examine the cache performance of PARKore and evaluate it against the best

sequential and Julienne programs. Cache misses, accesses, and dynamic instruction

count are collected using Intel performance counters and reported with perf stat.

Using perf stat, the following event counters were recorded for the running process

(and all child threads): instructions, LLC-loads, LLC-load-misses, LLC-stores,

and LLC-store-misses. Figure 4.4 reports the load and store misses in the last level

cache (LLC, in this case, L3 cache) for all programs and graphs. We report load

and store MPKI together, with the store MPKI stacked vertically on top of the load

MPKI.

From figure 4.4, we see that across most graphs, Julienne has significantly lower

MPKI compared to PARKore with either BMQ or MQIO. For Hyperlink, Orkut,

CHAPTER 4. EVALUATION AND RESULTS 28

Figure 4.4: MPKI: LLC Load and Store misses across all graphs and applications.

RMat, and Twitter, PARKore has a 3-4x increase in the MPKI relative to Julienne.

While Julienne has a base O(E) space requirement, it does not have any other over-

head to contribute compulsory misses (whereas PARKore does: the state variables).

PARKore also exhibits a greater number of store misses compared to Julienne, which

we attribute to the interplay between relaxed scheduling and the CPS. For both the

BMQ and MQIO, no update operation is supported (only push), with each batched

push writing to the underlying MQ structures.

Interestingly, PARKore has significantly lower MPKI compared to the sequential

BZ implementation. We reason that this is partially due to lower dynamic instruction

count for the sequential implementation, as well the existence of the BZQ structures.

In the BZ algorithm, O(2V + dmax) space is required to instantiate the necessary

memory structures for the BZ priority queue (dmax is the maximal degree in the

graph). Additionally, these priority structures exhibit poor memory spatial locality,

since priority decrements are modelled in the BZ algorithm as shifts of priority to a

lower degree bin. Even though vertices are allocated in a contiguous array, the size of

a single bin is bounded only by the number elements with the degree equal to bin id.

As such, when the BZ algorithm is run on large graphs, it is likely for array indexing

to cause cache when shifting between priority levels.

In figure 4.5, we examine the cache misses without factoring in instruction count

CHAPTER 4. EVALUATION AND RESULTS 29

(which varies drastically with program). Instead, in figure 4.5, cache accesses are

normalized relative to the number of nodes in the graph (a proxy for graph size). We

again show misses and accesses for both loads and stores stacked upon one another.

Figure 4.5: Cache accesses and misses across all graphs and applications, normalized
to graph size n.

Consider the base cost for loading a graph G using the ligra framework [35]. Since

graphs are stored in adjacency list format, there are |E|/cache line size compulsory

cache misses for every application in figure 4.5. If we consider that compulsory misses

for loading a graph G using the ligra framework are shared between programs, we

can reason that a significant fraction of cache misses stem from PARKore’s addi-

tional state variables, which require O(3V + E) more space than the BZ algorithm

[4]. This is evidenced by the data structure sizes provided in figure 3.1. In prac-

tice, the PARKore implementation uses a 64b struct which packs the state vari-

ables current core, visible core, and ecp, as well as an array (in CSR format)

for update hist. Additionally, on the graphs where Julienne performs significantly

CHAPTER 4. EVALUATION AND RESULTS 30

better than PARKore (namely, USA and RMat), the cache miss rate for PARKore

is extremely high (0.857 for PARKore on RMat, 0.844 for PARKore on USA). As

such, we recommend that further analysis seek to bring down the memory usage for

PARKore in attempts to improve cache hit rate.

4.4 Priority Scheduler Overheads

We investigate the difference between MQIO and BMQ by using time breakdowns

of both applications. Specifically, we look for overheads contributed by the priority

schedulers themselves. In figure 4.6, we plot the time breakdown for PARKore on all

benchmarks, with the percent of execution time taken up by enqueue and dequeue

operations. Across all benchmarks, enqueue costs are fairly minimal - pops from any

MultiQueue are constant time given c > 1. However, the BMQ does not suffer from

dequeue costs that the MQIO incurs, owing to the performance improvement of using

a bucket structure as opposed to a heap in the MQIO. For USA roads, dequeue can

take as much as 66% of the execution time when using a MQIO.

CHAPTER 4. EVALUATION AND RESULTS 31

Figure 4.6: Time breakdown for PARKore using BMQ and MQIO.

4.5 Sensitivity to MultiQueue Parameters

In our experience, MultiQueue parameters can have significant impacts on perfor-

mance. As such, we optimize results for MultiQueue parameters such as batched en-

queue size and batched dequeue size by sweeping over possible values for each graph

input. For results presented in previous sections, we use the following parameters on

a per-graph basis for each MultiQueue configuration.

For MQIO, sweeps can be found in figure 4.7, where a sweet spot for most graphs

occurs at enqueue batch sizes of [16, 256] and dequeue batch sizes of [4, 16]. In these

experiments, the graphs utilized prefer larger enqueue sizes relative to largeer dequeue

sizes, which aligns with the notion that updates are more abundant than dequeues

in k-core. One outlier of interest is USA roads, where dequeue batch size is directly

correlated with speedup. The best performing batch settings (dequeue size = 16384,

enqueue size = 256) on USA roads yield almost a 3x speedup compared to no batching.

This trend can further be explained with the graph characteristics: road graphs

CHAPTER 4. EVALUATION AND RESULTS 32

contain lots of equal degree vertices, with only select few higher degree vertices. As

such, many vertices do not contribute updates to their equal core neighbors, which

suits a MultiQueue that can pop many vertices in constant time.

Bucket MQ sweeps are shown below for bucket sizes of 64 and 256 in figures 4.8 and

4.9 respectively. We note that beyond a certain point, bucket size has marginal effect

on the performance of the BMQ. This is suggested by the similarity in performance

numbers between figure 4.8 and figure 4.9. Again, best performing parameters were

taken on a per-graph basis, with general trends for BMQ being that enqueue batch

sizes around 256 being the most performant, whereas dequeue batch sizes have a bit

more variance per graph. On Youtube, we find that the parameter sweep yields sig-

nificant noise, as indicated by the variance in both the speedup of the best performing

configuration, as well as the variance in parameter settings for this best performing

config.

CHAPTER 4. EVALUATION AND RESULTS 33

Figure 4.7: Speedup: MQIO relative to best sequential.

CHAPTER 4. EVALUATION AND RESULTS 34

Figure 4.8: Speedup: Bucket MQ (64 buckets) relative to best sequential.

CHAPTER 4. EVALUATION AND RESULTS 35

Figure 4.9: Speedup: Bucket MQ (256 buckets) relative to best sequential.

5. Conclusion and Future Work

Algorithms like k-core decomposition require a strict task ordering for correctness

and work-efficiency. Additionally, task orderings are not only dependent on the graph

input, but also hidden until runtime. When attempting to parallelize k-core, these re-

quirement makes extracting parallelism difficult. Hardware centric versions for k-core

decomposition either theorize speculative approaches using custom hardware struc-

tures, or are implemented bulk-synchronously using GPU’s. Software solutions forego

speculation as the performance consequences are severe on misspeculations. Asyn-

chronous algorithms for k-core have previously not been thought possible. Thus, prior

work in parallelizing k-core decomposition predominantly focus on bulk-synchronous

approaches.

We introduced the first asynchronous, relaxed algorithm for k-core that is toler-

ant to relaxation in the scheduling order, as well as priority inversions from potential

misspeculations on priority. Our results show that an algorithm of this class can be

competitive with state of the art work, but require additional research and optimiza-

tion.

5.1 Future Work

Moving forward, there are immediate directions for optimization. Firstly, the build

system needs to be synchronized across programs. In our experiments, certain pro-

grams relied on clang, while others on g++. This has impacts on dynamic instruction

count and performance that may result in discrepancies in our results. Additionally,

we suffered difficulties during the evaluation of our results, namely due to usage of

shared workstations. In the future, experimentation should strive to be conducted on

high core count servers with low to no base load.

Additionally, during analysis of cache performance, we found that PARKore initi-

ates many more calls to the cache than other programs, due to the additional memory

cost from PARKore’s state variables. By optimizing memory cost (and memory lo-

cality), it may be possible to improve the performance of PARKore even further.

36

CHAPTER 5. CONCLUSION AND FUTURE WORK 37

One optimization is to reduce the update hist array from O(E) to O(V) by creating

equal size buckets for each vertex.

Lastly, future research outside of k-core could benefit from algorithms such as

PARKore. Could other algorithms that are thought to have relaxed schedules also

benefit from a relaxation algorithm of this type? Perhaps more generally, we wonder

if it is possible to build a software framework that can generate relaxed algorithms

given proper understanding of the algorithm invariants.

A. Appendix

38

APPENDIX A. APPENDIX 39

A.1 PARKore Code

The following code uses different naming for state variables as compared to table 3.1.

A mapping between state variables is provided below in table

State Variable Name in Code
current core core
update hist histories
visible core activity

ecp excess

Table A.1: State variable mappings

1 #include ” l i g r a . h”

2 #include ” u t i l s . h”

3 #include <ca s s e r t>

4 #include <c s t d l i b>

5 #include <vector>

6 #include <algor ithm>

7 #include <numeric>

8 #include <f unc t i ona l>

9 #include <thread>

10 #include <atomic>

11 #include <tuple>

12 #include <iostream>

13 #include <l a tch>

14

15 #include <boost /heap/ d ary heap . hpp>

16

17 #include ”BucketStructs . h”

18 #include ”MultiQueue . h”

19 #include ”MultiQueueUpdate . h”

20 #include ”MultiBucketQueue . h”

21 #include ”MultiBucketQueueUpdate . h”

22

23 #include ” s r c / l o gg e r . h”

24 #include ” s r c / u t i l s . h”

25

26

27 // #de f ine VALIDATE

28 #define VERBOSE

29

30 #define QUEUES PER THREAD 4

31

32 // QUEUE TYPES

33 using PQElement = std : : tuple<u int32 t , u in t32 t >;

34

35 struct queue params

36 {
37 s i z e t numBuckets = 0 ;

38 s i z e t numQueues = 0 ;

39 s i z e t de l t a = 0 ;

APPENDIX A. APPENDIX 40

40 s i z e t batchPushSize = 0 ;

41 s i z e t batchPopSize = 0 ;

42 } ;
43

44 // GLOBALS

45 std : : mutex cout mutex ;

46

47 /∗
48 ∗ Contents :

49 ∗ core : Current es t imated coreness , equa l to p r i o r i t y in the pq

50 ∗ exces s : number o f s chedu l e r dependences wi th in t h i s core , must reach 0

51 ∗ to reduce core , and i s decremented be fo r e core .

52 ∗ a c t i v i t y : Previous es t imated coreness used to ad ju s t the coreness e s t imate s

53 ∗ f o r ne ighbours . Becomes equa l to core when the v e r t e x i s

54 ∗ dequeued .

55 ∗ pending : number o f pending decrements to core / exces s . Accumulates as

56 ∗ neighbours are dequeued , then app l i ed to core / exces s and

57 ∗ s e t to 0 .

58 ∗ l o c k : a Reader/Writer l o c k f o r synchron i za t ion . Pending may be incremented

59 ∗ in Reader mode , core / exces s r e qu i r e Writer to modify . Ac t i v i t y

60 ∗ i s lock−f ree , as i s enqueues .

61 ∗ enqueues : Count o f how many times t h i s v e r t e x i s enqueued to the pq . May

62 ∗ become inaccura te i f i t sa tura te s , which i s f i n e . The po in t i s

63 ∗ to make sure t ha t the re i s always at l e a s t one entry in the pq

64 ∗ i f pending > 0 , so we don ’ t l o s e updates during terminat ion

65 ∗ (note t ha t I never saw t h i s happen , but i t t h e o r e t i c a l l y

66 ∗ cou ld)

67 ∗ ∗/
68 struct ve r t e x da t a t

69 {
70 std : : a t om i c i n t 32 t core ;

71 i n t 3 2 t exc e s s ;

72 std : : a t om i c i n t 32 t a c t i v i t y ;

73 std : : a t omic u in t16 t pending ; // 16− b i t s to f i t in 4 words s t i l l

74 std : : a t omi c u in t8 t enqueues ;

75 std : : a t om i c i n t 8 t l ock ;

76 } ;
77

78 s t a t i c a s s e r t (s izeof (v e r t e x da t a t) == s izeof (u i n t 32 t) ∗ 4) ;

79 s t a t i c a s s e r t (std : : a l i gnment o f v<ve r t ex da ta t> == std : : a l i gnment o f v<u int32 t >) ;

80

81

82 inl ine bool attemptUpdate (v e r t e x da t a t & v , std : : a t om i c i n t 32 t ∗ h i s t o r i e s)

83 {
84 bool update occurred = fa l se ;

85 i f (v . pending . load (std : : memory order re laxed) == 0) {return fa l se ;}
86 {
87 wr i t e r guard w(v . l o ck) ;

88 i n t 3 2 t pending = v . pending . load (std : : memory order re laxed) ;

89 i n t 3 2 t core = v . core . load (std : : memory order re laxed) ;

90 i f (pending == 0) {return fa l se ;}
91 v . pending . s t o r e (0 , std : : memory order re laxed) ;

92 do {
93 pending −= v . exce s s ;

94 i f (pending > 0) {

APPENDIX A. APPENDIX 41

95 pending−−;

96 core−−;

97 v . exc e s s = h i s t o r i e s [core] . load (std : : memory order re laxed) ;

98 update occurred = true ;

99 i f (v . exc e s s < 0) {
100 pending −= v . exce s s ;

101 v . exc e s s = 0 ;

102 }
103 } else {
104 v . exce s s = −pending ;

105 }
106 } while (pending > 0) ;

107 i f (update occurred) {v . core . s t o r e (core , s td : : memory order re laxed) ;}
108 }
109 return update occurred ;

110 }
111

112 template<bool USE TTAS, bool USE BMQ, bool USE UPDATE, typename MQType>

113 void thread run (

114 const u in t 32 t t i d ,

115 graph<symmetricVertex> & G,

116 const s i z e t n ,

117 const s i z e t m,

118 std : : vector<ve r t ex da ta t> & vertex data ,

119 std : : vector<std : : a tomic in t32 t> & h i s t o r i e s ,

120 MQType & mq)

121 {
122 t h r e a d l o c a l u i n t 64 t ucoremin = 0 ;

123 t h r e a d l o c a l u i n t 64 t ucoremax = 0 ;

124 t h r e a d l o c a l u i n t 64 t ucoremiddle = 0 ;

125 t h r e a d l o c a l u i n t 64 t exce s s eqz = 0 ;

126 t h r e a d l o c a l u i n t 64 t pastupdatemin = 0 ;

127 t h r e a d l o c a l u i n t 64 t update = 0 ;

128 ucoremin = 0 ;

129 ucoremax = 0 ;

130 ucoremiddle = 0 ;

131 exce s s eqz = 0 ;

132 pastupdatemin = 0 ;

133 update = 0 ;

134

135 logg ing<l og msg t> l o gg e r (m / 1024 , ” . ” , ” pkcps thread ” + std : : t o s t r i n g (t i d) + ”

. data”) ;

136

137 auto a r r o f f s e t o f i n d e x = [&V = G.V,

138 ZeroDeg = G.V [0] . getOutNeighbors ()] (long v) −> u in t 32 t {
139 return V[v] . getOutNeighbors () − ZeroDeg ;

140 } ;
141

142 while (true) {
143 u in t 32 t v ;

144 i f constexpr (USE UPDATE) {
145 auto item = mq. tryPop () ;

146 i f (item) {
147 std : : t i e (std : : ignore , v) = item . get () ;

148 } else {

APPENDIX A. APPENDIX 42

149 break ;

150 }
151 } else {
152 auto item = mq. pop () ;

153 i f (item) {
154 std : : t i e (std : : ignore , v) = item . get () ;

155 } else {
156 break ;

157 }
158 }
159

160

161 #i f d e f VALIDATE

162 a s s e r t (v < n) ;

163 #end i f

164

165 v e r t e x da t a t & vdv = ver t ex data [v] ;

166

167 i f constexpr (!USE TTAS) {
168 saturat ingDecr (&vdv . enqueues) ;

169 update += attemptUpdate (vdv , &h i s t o r i e s [a r r o f f s e t o f i n d e x (v)]) ;

170 }
171

172 i n t 3 2 t new act = vdv . core . load (std : : memory order re laxed) ;

173 i n t 3 2 t o l d a c t = vdv . a c t i v i t y . load (std : : memory order re laxed) ;

174

175 i f (! updateMin(&ver t ex data [v] . a c t i v i t y , new act , o l d a c t)) {continue ;}
176 pastupdatemin++;

177

178 #i f d e f VALIDATE

179 a s s e r t (new act < o l d a c t) ;

180 a s s e r t (o l d a c t > 0) ;

181 #end i f

182

183 l ogg e r . l og ({0 , v , new act , o l d a c t }) ;
184

185 u in t 32 t ∗ const begin = &G.V[v] . getOutNeighbors () [0] ;

186 u in t 32 t ∗ const end = begin + G.V[v] . getOutDegree () ;

187 for (u i n t 32 t ∗ i t = begin ; i t != end ; i t++) {
188 const u in t 32 t u = ∗ i t ;

189 v e r t e x da t a t & vdu = ver t ex data [u] ;

190 i f (vdu . core . load () <= new act) {
191 // Nece s sa r i l y :

192 // new act < o l d a c t

193 // and

194 // vdu . core <= G.V[u] . getOutDegree ()

195 // making a comparison o f new act with o l d a c t and degree moot

196 ucoremin++;

197 continue ;

198 }
199

200 const u in t 32 t h i s t o f f s e t = a r r o f f s e t o f i n d e x (u) ;

201 bool update occurred = fa l se ;

202 bool attempt update = fa l se ;

203 i n t 3 2 t ucore , pending ;

APPENDIX A. APPENDIX 43

204 { // acqu i re

205 std : : c ond i t i o na l t<USE TTAS,

206 ttas guard<i n t 8 t >,

207 reader guard<i n t 8 t>

208 > g (vdu . l ock) ;

209

210 ucore = vdu . core . load (std : : memory order re laxed) ;

211 i f (o l d a c t < ucore) {
212 // I t ’ s p o s s i b l e f o r o l d a c t to exceed u ’ s degree , so we need to t e s t

213 // some e qu i v a l en t cond i t i on . u ’ s core i s a lower bound on i t s degree

214 // and e x h i b i t s b e t t e r cache l o c a l i t y

215 h i s t o r i e s [h i s t o f f s e t + o l d a c t] . f e t ch sub (1 , std : : memory order re laxed) ;

216 ucoremax++;

217 }
218 h i s t o r i e s [h i s t o f f s e t + new act] . f e t ch add (1 , std : : memory order re laxed) ;

219 i f (new act < ucore && ucore <= o ld a c t) {
220 ucoremiddle++;

221 i f constexpr (USE TTAS) {
222 for (i n t 3 2 t num decs = 1 ; num decs > 0 ; num decs−−) {
223 i f (vdu . exc e s s == 0) {
224 ucore−−;

225 i n t 3 2 t h = h i s t o r i e s [h i s t o f f s e t + ucore] ;

226 i f (h < 0) {num decs −= h ;}
227 vdu . core . s t o r e (ucore , s td : : memory order re laxed) ;

228 vdu . exce s s = max(0 , h) ;

229 update occurred = true ;

230 } else {
231 vdu . excess −−;

232 }
233 }
234 } else {
235 pending = vdu . pending . f e t ch add (1 , std : : memory order acquire) + 1 ;

236 i f (pending > (1 << 12) | | pending >= (ucore − new act) >> 1) {
237 attempt update = true ;

238 } else i f (vdu . enqueues . load (std : : memory order re laxed) == 0) {
239 // I f we added pending , make sure t ha t we

240 // update the v e r t e x at some poin t in the f u tu r e

241 // by enqueueing i t i f i t i sn ’ t a l ready enqueued

242 // and we don ’ t update i t r i g h t now

243 update occurred = true ;

244 }
245 }
246 }
247 } // r e l e a s e

248 i f (attempt update) {
249 update occurred = attemptUpdate (vdu , &h i s t o r i e s [h i s t o f f s e t]) ;

250 i f (update occurred) {update++;}
251 }
252 i f (update occurred) {
253 exce s s eqz++;

254 i f constexpr (!USE TTAS) { s a tu r a t i n g I n c r (&vdu . enqueues) ;}
255 i f constexpr (USE UPDATE) {
256 mq. updateMin (vdu . core . load (std : : memory order re laxed) , u) ;

257 }
258 else

APPENDIX A. APPENDIX 44

259 {
260 mq. push (vdu . core . load (std : : memory order re laxed) , u) ;

261 }
262 }
263 l ogg e r . l og ({1 , u , ucore , vdu . exce s s }) ;
264 }
265 }
266 #i f d e f VERBOSE

267 {
268 std : : lock guard<std : : mutex> l o ck (cout mutex) ;

269 std : : cout << ”Thread ” << t i d << ” found : ” << std : : endl

270 << ”\ t i t passed the updateMin ” << std : : setw (10) << pastupdatemin <<

” t imes ” <<

271 std : : endl

272 << ”\ tucore <= new act < o l d a c t ” << std : : setw (10) << ucoremin << ”

t imes ” <<

273 std : : endl

274 << ”\ tnew act < ucore <= o ld a c t ” << std : : setw (10) << ucoremiddle << ”

t imes ” <<

275 ” (with exce s s==0 ” << exce s s eqz << ” t imes) ” << std : : endl

276 << ”\ tnew act < o l d a c t < ucore ” << std : : setw (10) << ucoremax << ”

t imes ” <<

277 std : : endl

278 << ”\ tand performed updates ” << std : : setw (10) << update << ”

t imes ” <<

279 std : : endl ;

280 }
281 #end i f

282 }
283

284 template<typename T>

285 inl ine std : : tuple<T, T> ge t range (s i z e t s eg id , s i z e t num segs , s i z e t n)

286 {
287 a s s e r t (s e g i d < num segs) ;

288 i f (num segs == 0 | | num segs == 1) {
289 return std : : make tuple<T, T>(0 , n) ;

290 }
291 s i z e t r a n g e s i z e = n / num segs ;

292 return std : : make tuple<T, T>(

293 s e g i d ∗ r ange s i z e ,

294 ((s e g i d < num segs − 1) ? (s e g i d + 1) ∗ r a n g e s i z e : n) − 1) ;

295 }
296

297 template<bool USE TTAS, typename MQType>

298 void i n i t i a l i z e (

299 const u in t 32 t t i d ,

300 const u in t 32 t num threads ,

301 graph<symmetricVertex> & G,

302 const s i z e t n ,

303 const s i z e t m,

304 std : : vector<ve r t ex da ta t> & vertex data ,

305 std : : vector<std : : a tomic in t32 t> & h i s t o r i e s ,

306 MQType & mq

307)

308 {

APPENDIX A. APPENDIX 45

309 auto mrange = get range<u int32 t >(t i d , num threads , m) ;

310 auto nrange = get range<u int32 t >(t i d , num threads , n) ;

311

312 #i f d e f VALIDATE

313 {
314 std : : lock guard<std : : mutex> l g (cout mutex) ;

315 std : : cout << ” thread ” << t i d << ” i n i t i a l i z i n g with ranges ”

316 << ”n=(” << std : : get<0>(nrange) << ” , ” << std : : get<1>(nrange)

317 << ”) , m=(” << std : : get<0>(mrange) << ” , ” << std : : get<1>(mrange) << ”) ”

<< std : : endl ;

318 }
319 #end i f

320

321 for (s i z e t i = std : : get<0>(mrange) ; i <= std : : get<1>(mrange) ; i++) {
322 std : : a t om i c i n i t (& h i s t o r i e s [i] , static cast<i n t 32 t >(0)) ;

323 }
324

325 for (s i z e t i = std : : get<0>(nrange) ; i < std : : get<1>(nrange) ; i++) {
326 ve r t ex data [i] . co re = G.V[i] . getOutDegree () ;

327 ve r t ex data [i] . e x c e s s = 0 ;

328 std : : a t om i c i n i t (&ver t ex data [i] . a c t i v i t y , static cast<u int32 t >(n)) ;

329 std : : a t om i c i n i t (&ver t ex data [i] . lock , 0) ;

330 i f constexpr (USE TTAS) { std : : a t om i c i n i t (&ver t ex data [i] . enqueues , 1) ;}
331 mq. push (G.V[i] . getOutDegree () , i) ;

332 }
333 }
334

335 template<bool USE TTAS, bool USE BMQ, bool USE UPDATE, typename MQType>

336 void th r ead ta sk (

337 const u in t 32 t t i d ,

338 const u in t 32 t num threads ,

339 graph<symmetricVertex> & G,

340 const s i z e t n ,

341 const s i z e t m,

342 std : : vector<ve r t ex da ta t> & vertex data ,

343 std : : vector<std : : a tomic in t32 t> & h i s t o r i e s ,

344 MQType & mq,

345 std : : l a t ch & bar)

346 {
347 i f constexpr (!USE UPDATE) {
348 mq. initTID () ;

349 }
350 i n i t i a l i z e <USE TTAS, MQType>(t i d , num threads , G, n , m, vertex data , h i s t o r i e s , mq

) ;

351 bar . a r r i v e and wa i t () ;

352 thread run<USE TTAS, USE BMQ, USE UPDATE, MQType>(t i d , G, n , m, vertex data ,

h i s t o r i e s , mq) ;

353 }
354

355 template<bool USE TTAS, bool USE BMQ, bool USE UPDATE, class vertex>

356 struct kcore

357 {
358 graph<vertex> & G;

359 s i z e t num threads ;

360 queue params & qparams ;

APPENDIX A. APPENDIX 46

361

362 std : : vector<u int32 t> operator () ()

363 {
364 std : : c e r r << ”Only symmetric ver tex i s supported (−s) \n” ;

365 std : : abort () ;

366 }
367 } ;
368

369

370 template<bool USE TTAS>

371 struct kcore<USE TTAS, true , true , symmetricVertex>

372 {
373 graph<symmetricVertex> & G;

374 s i z e t num threads ;

375 queue params & qparams ;

376

377 std : : vector<u int32 t> operator () ()

378 {
379 s i z e t n = G. n ;

380 s i z e t m = G.m;

381

382 std : : vector<ve r t ex da ta t> ver t ex data (n) ;

383 std : : vector<std : : a tomic in t32 t> h i s t o r i e s (m + 1) ;

384

385 // threads

386 std : : vector<std : : thread ∗> workers ;

387

388 // i n i t i a l i z a t i o n l a t c h

389 std : : l a t ch bar {(p t r d i f f t) (num threads) } ;
390

391 using MQ Bucket Update = BucketMultiQueue<std : : g r eate r<u int32 t >, u in t32 t ,

u int32 t , false >;

392

393 MQ Bucket Update mq(n ,

394 qparams . numQueues ,

395 num threads ,

396 qparams . de l ta ,

397 qparams . numBuckets ,

398 qparams . batchPopSize ,

399 qparams . batchPushSize ,

400 i n c r e a s i n g

401) ;

402

403 for (s i z e t t = 1 ; t < num threads ; t++) {
404 #i f d e f VALIDATE

405 std : : cout << ”spawning worker ” << t << ”\n” ;

406 #end i f

407 std : : thread ∗ worker = new std : : thread (

408 thread task<USE TTAS, true , true , MQ Bucket Update>,

409 t ,

410 num threads ,

411 std : : r e f (G) ,

412 n ,

413 m,

414 std : : r e f (ve r t ex data) ,

APPENDIX A. APPENDIX 47

415 std : : r e f (h i s t o r i e s) ,

416 std : : r e f (mq) ,

417 std : : r e f (bar)) ;

418 workers . push back (worker) ;

419 }
420

421 // spawn on thread 0

422 thread task<USE TTAS, true , true , MQ Bucket Update>(0 , num threads , G, n , m,

vertex data , h i s t o r i e s , mq, bar) ;

423

424 // wait f o r thread e x i t

425 for (std : : thread ∗ worker : workers) {
426 worker−>j o i n () ;

427 delete worker ;

428 }
429

430 // pr in t mq s t a t s

431 #i f d e f VERBOSE

432 mq. s t a t () ;

433 #end i f

434

435

436 i n t 3 2 t l a r g e s tCor e = 0 ;

437 std : : vector<u int32 t> co r e s (n) ;

438 for (s i z e t i = 0 ; i < n ; i++) {
439 auto c = ver t ex data [i] . co re . load (std : : memory order re laxed) ;

440 co r e s [i] = c ;

441 l a r g e s tCor e = std : : max(la rge s tCore , c) ;

442 }
443 cout << ” l a rg e s tCor e was ” << l a r g e s tCor e << endl ;

444 i f (n == 3072626 && m == 234370166) { a s s e r t (l a r g e s tCor e == 253) ;}
445

446 return co r e s ;

447 }
448 } ;
449

450 template<bool USE TTAS>

451 struct kcore<USE TTAS, true , false , symmetricVertex>

452 {
453 graph<symmetricVertex> & G;

454 s i z e t num threads ;

455 queue params & qparams ;

456

457 std : : vector<u int32 t> operator () ()

458 {
459 s i z e t n = G. n ;

460 s i z e t m = G.m;

461

462 std : : vector<ve r t ex da ta t> ver t ex data (n) ;

463 std : : vector<std : : a tomic in t32 t> h i s t o r i e s (m + 1) ;

464

465 // threads

466 std : : vector<std : : thread ∗> workers ;

467

468 auto p r e f e t c h e r = [] (u i n t 32 t v) −> void {} ;

APPENDIX A. APPENDIX 48

469

470 // i n i t i a l i z a t i o n l a t c h

471 std : : l a t ch bar {(p t r d i f f t) (num threads) } ;
472

473 auto getBucketID = [&] (u i n t 32 t v) −> bucket id {
474 return bucket id (ve r t ex data [v] . core) >> qparams . d e l t a ;

475 } ;
476

477 using MQ Bucket = MultiBucketQueue<dec l type (getBucketID) , dec l type (p r e f e t c h e r) ,

478 std : : g reate r<bucket id >, u in t32 t , u int32 t , false >;

479

480 MQ Bucket mq(getBucketID ,

481 pr e f e t che r ,

482 qparams . numQueues ,

483 num threads ,

484 qparams . de l ta ,

485 qparams . numBuckets ,

486 qparams . batchPopSize ,

487 qparams . batchPushSize ,

488 i n c r e a s i n g

489) ;

490

491 for (s i z e t t = 1 ; t < num threads ; t++) {
492 #i f d e f VALIDATE

493 std : : cout << ”spawning worker ” << t << ”\n” ;

494 #end i f

495 std : : thread ∗ worker = new std : : thread (

496 thread task<USE TTAS, true , false , MQ Bucket>,

497 t ,

498 num threads ,

499 std : : r e f (G) ,

500 n ,

501 m,

502 std : : r e f (ve r t ex data) ,

503 std : : r e f (h i s t o r i e s) ,

504 std : : r e f (mq) ,

505 std : : r e f (bar)) ;

506 workers . push back (worker) ;

507 }
508

509 // spawn on thread 0

510 thread task<USE TTAS, true , false , MQ Bucket>(0 , num threads , G, n , m, vertex data ,

h i s t o r i e s , mq, bar) ;

511

512 // wait f o r thread e x i t

513 for (std : : thread ∗ worker : workers) {
514 worker−>j o i n () ;

515 delete worker ;

516 }
517

518 // pr in t mq s t a t s

519 #i f d e f VERBOSE

520 mq. s t a t () ;

521 #end i f

522

APPENDIX A. APPENDIX 49

523

524 i n t 3 2 t l a r g e s tCor e = 0 ;

525 std : : vector<u int32 t> co r e s (n) ;

526 for (s i z e t i = 0 ; i < n ; i++) {
527 auto c = ver t ex data [i] . co re . load (std : : memory order re laxed) ;

528 co r e s [i] = c ;

529 l a r g e s tCor e = std : : max(la rge s tCore , c) ;

530 }
531 cout << ” l a rg e s tCor e was ” << l a r g e s tCor e << endl ;

532 i f (n == 3072626 && m == 234370166) { a s s e r t (l a r g e s tCor e == 253) ;}
533

534 return co r e s ;

535 }
536 } ;
537

538

539 template<bool USE TTAS>

540 struct kcore<USE TTAS, false , true , symmetricVertex>

541 {
542 graph<symmetricVertex> & G;

543 s i z e t num threads ;

544 queue params & qparams ;

545

546 std : : vector<u int32 t> operator () ()

547 {
548 s i z e t n = G. n ;

549 s i z e t m = G.m;

550

551 std : : vector<ve r t ex da ta t> ver t ex data (n) ;

552 std : : vector<std : : a tomic in t32 t> h i s t o r i e s (m + 1) ;

553

554 // threads

555 std : : vector<std : : thread ∗> workers ;

556

557 // i n i t i a l i z a t i o n l a t c h

558 std : : l a t ch bar {(p t r d i f f t) (num threads) } ;
559

560 using UpdateQueueType = boost : : heap : : d ary heap<

561 PQElement ,

562 boost : : heap : : compare<std : : g r eate r<PQElement>>,

563 boost : : heap : : a r i ty <4>,

564 boost : : heap : : mutable <true>

565 >;

566 using MQ UpdateMin = MultiQueueUpdateMin<

567 UpdateQueueType , UpdateQueueType : : handle type ,

568 std : : g reate r<PQElement>, u in t32 t , u i n t 32 t

569 >;

570

571 MQ UpdateMin mq(n , qparams . numQueues , num threads) ;

572

573 for (s i z e t t = 1 ; t < num threads ; t++) {
574 #i f d e f VALIDATE

575 std : : cout << ”spawning worker ” << t << ”\n” ;

576 #end i f

577 std : : thread ∗ worker = new std : : thread (

APPENDIX A. APPENDIX 50

578 thread task<USE TTAS, false , true ,MQ UpdateMin>,

579 t ,

580 num threads ,

581 std : : r e f (G) ,

582 n ,

583 m,

584 std : : r e f (ve r t ex data) ,

585 std : : r e f (h i s t o r i e s) ,

586 std : : r e f (mq) ,

587 std : : r e f (bar)) ;

588 workers . push back (worker) ;

589 }
590

591 // spawn on thread 0

592 thread task<USE TTAS, false , true ,MQ UpdateMin>(0 , num threads , G, n , m,

vertex data , h i s t o r i e s , mq, bar) ;

593

594 // wait f o r thread e x i t

595 for (std : : thread ∗ worker : workers) {
596 worker−>j o i n () ;

597 delete worker ;

598 }
599

600 // pr in t mq s t a t s

601 #i f d e f VERBOSE

602 mq. s t a t () ;

603 #end i f

604

605 i n t 3 2 t l a r g e s tCor e = 0 ;

606 std : : vector<u int32 t> co r e s (n) ;

607 for (s i z e t i = 0 ; i < n ; i++) {
608 auto c = ver t ex data [i] . co re . load (std : : memory order re laxed) ;

609 co r e s [i] = c ;

610 l a r g e s tCor e = std : : max(la rge s tCore , c) ;

611 }
612 cout << ” l a rg e s tCor e was ” << l a r g e s tCor e << endl ;

613 i f (n == 3072626 && m == 234370166) { a s s e r t (l a r g e s tCor e == 253) ;}
614

615 return co r e s ;

616

617 }
618 } ;
619

620 template<bool USE TTAS>

621 struct kcore<USE TTAS, false , false , symmetricVertex>

622 {
623 graph<symmetricVertex> & G;

624 s i z e t num threads ;

625 queue params & qparams ;

626

627 std : : vector<u int32 t> operator () ()

628 {
629 s i z e t n = G. n ;

630 s i z e t m = G.m;

631

APPENDIX A. APPENDIX 51

632 std : : vector<ve r t ex da ta t> ver t ex data (n) ;

633 std : : vector<std : : a tomic in t32 t> h i s t o r i e s (m + 1) ;

634

635 // threads

636 std : : vector<std : : thread ∗> workers ;

637

638 auto p r e f e t c h e r = [] (u i n t 32 t v) −> void {} ;
639

640 // i n i t i a l i z a t i o n l a t c h

641 std : : l a t ch bar {(p t r d i f f t) (num threads) } ;
642

643 using MQ IO = MultiQueue<dec l type (p r e f e t c h e r) , s td : : g reate r<PQElement>, u in t32 t ,

u int32 t ,

644 false >;

645

646 MQ IO mq(pr e f e t che r ,

647 qparams . numQueues ,

648 num threads ,

649 qparams . batchPopSize ,

650 qparams . batchPushSize

651) ;

652

653 for (s i z e t t = 1 ; t < num threads ; t++) {
654 #i f d e f VALIDATE

655 std : : cout << ”spawning worker ” << t << ”\n” ;

656 #end i f

657 std : : thread ∗ worker = new std : : thread (

658 thread task<USE TTAS, false , false ,MQ IO>,

659 t ,

660 num threads ,

661 std : : r e f (G) ,

662 n ,

663 m,

664 std : : r e f (ve r t ex data) ,

665 std : : r e f (h i s t o r i e s) ,

666 std : : r e f (mq) ,

667 std : : r e f (bar)) ;

668 workers . push back (worker) ;

669 }
670

671 // spawn on thread 0

672 thread task<USE TTAS, false , false ,MQ IO>(0 , num threads , G, n , m, vertex data ,

h i s t o r i e s , mq, bar) ;

673

674 // wait f o r thread e x i t

675 for (std : : thread ∗ worker : workers) {
676 worker−>j o i n () ;

677 delete worker ;

678 }
679

680 // pr in t mq s t a t s

681 #i f d e f VERBOSE

682 mq. s t a t () ;

683 #end i f

684

APPENDIX A. APPENDIX 52

685 i n t 3 2 t l a r g e s tCor e = 0 ;

686 std : : vector<u int32 t> co r e s (n) ;

687 for (s i z e t i = 0 ; i < n ; i++) {
688 auto c = ver t ex data [i] . co re . load (std : : memory order re laxed) ;

689 co r e s [i] = c ;

690 l a r g e s tCor e = std : : max(la rge s tCore , c) ;

691 }
692 cout << ” l a rg e s tCor e was ” << l a r g e s tCor e << endl ;

693 i f (n == 3072626 && m == 234370166) { a s s e r t (l a r g e s tCor e == 253) ;}
694

695 return co r e s ;

696 }
697 } ;
698

699 template<class vertex>

700 void Compute (graph<vertex> & GA, commandLine P)

701 {
702 bool pr intCores = P. getOption (”−p”) ;

703 bool TTAS = P. getOption (”−t t a s ”) ;

704 bool BQ = P. getOption (”−bq”) ;

705 bool U = P. getOption (”−u”) ;

706 s i z e t numWorkers = P. getOptionLongValue (”−n” , 1) ;

707 s i z e t numBuckets = P. getOptionLongValue (”−nb” , 64) ;

708 s i z e t numQueues = P. getOptionLongValue (”−nq” , QUEUES PER THREAD ∗ numWorkers) ;

709 s i z e t de l t a = P. getOptionLongValue (”−d” , 0) ;

710 s i z e t batchPushSize = P. getOptionLongValue (”−pushs” , 1) ; // enqueue batch s i z e

711 s i z e t batchPopSize = P. getOptionLongValue (”−pops” , 1) ; // dequeue batch s i z e

712

713 queue params qp = {
714 . numBuckets = numBuckets ,

715 . numQueues = numQueues ,

716 . d e l t a = del ta ,

717 . batchPushSize = batchPushSize ,

718 . batchPopSize = batchPopSize

719 } ;
720

721 cout << ”### app l i c a t i o n : parkcorecps ” ;

722 i f (TTAS) { cout << ” with t t a s ” ;} else { cout << ” with rw lock ” ;}
723 i f (BQ) { cout << ” us ing bucket queue” ;} else { cout << ” us ing push/pop queue” ;}
724 i f (U) { cout << ” with update () ” ;} else { cout << ” us ing push () ” ;}
725 cout << endl ;

726 cout << ”### graph : ” << P. getArgument (0) << endl ;

727 cout << ”### workers : ” << numWorkers << endl ;

728 cout << ”### n : ” << GA. n << endl ;

729 cout << ”### m: ” << GA.m << endl ;

730 cout << ”###” << endl ;

731 cout << ”### queues : ” << qp . numQueues << endl ;

732 i f (BQ) {
733 cout << ”### numBuckets : ” << qp . numBuckets << endl ;

734 cout << ”### de l t a : ” << qp . de l t a << endl ;

735 }
736 cout << ”### batchPushSize : ” << qp . batchPushSize << endl ;

737 cout << ”### batchPopSize : ” << qp . batchPopSize << endl ;

738

739 std : : vector<u int32 t> co r e s ;

APPENDIX A. APPENDIX 53

740

741 i f (TTAS && BQ && U) {
742 kcore<true , true , true , vertex> k{GA, numWorkers , qp } ;
743 co r e s = k () ;

744 } else i f (TTAS && BQ && !U) {
745 kcore<true , true , false , vertex> k{GA, numWorkers , qp } ;
746 co r e s = k () ;

747 } else i f (TTAS && !BQ && U) {
748 kcore<true , false , true , vertex> k{GA, numWorkers , qp } ;
749 co r e s = k () ;

750 } else i f (TTAS && !BQ && !U) {
751 kcore<true , false , false , vertex> k{GA, numWorkers , qp } ;
752 co r e s = k () ;

753 } else i f (!TTAS && BQ && U) {
754 kcore<false , true , true , vertex> k{GA, numWorkers , qp } ;
755 co r e s = k () ;

756 } else i f (!TTAS && BQ && !U) {
757 kcore<false , true , false , vertex> k{GA, numWorkers , qp } ;
758 co r e s = k () ;

759 } else i f (!TTAS && !BQ && U) {
760 kcore<false , false , true , vertex> k{GA, numWorkers , qp } ;
761 co r e s = k () ;

762 } else i f (!TTAS && !BQ && !U) {
763 kcore<false , false , false , vertex> k{GA, numWorkers , qp } ;
764 co r e s = k () ;

765 }
766

767 i f (pr intCores) {
768 cout << ” co r e s : ” << endl ;

769 for (int i = 0 ; i < GA. n ; i++) {
770 cout << i << ” ” << co r e s [i] << endl ;

771 }
772 }
773 }

A.2 Sequential BZ Implementation

Below is a code listing for the sequential BZ algorithm implementation that all mul-

tithreaded programs were benchmarked to. Note that we additionally used this im-

plementation to prove the correctness of the PARKore algorithm in single threaded

execution. As such, this code shares the same variable mapping as seen in section

A.1.

1 #include ” l i g r a . h”

2 #include ” u t i l s . h”

3 #include <ca s s e r t>

4 #include <c s t d l i b>

5 #include <vector>

6 #include <algor ithm>

7 #include <numeric>

8 #include <f unc t i ona l>

9

APPENDIX A. APPENDIX 54

10 // #de f ine VALIDATE

11

12 typedef struct ve r t e x da t a t

13 {
14 u in t 32 t co r e s ;

15 u in t 32 t exc e s s ;

16 u in t 32 t a c t i v i t i e s ;

17 u in t 32 t pos ;

18 } ve r t e x da t a t ;

19

20

21 void va l i d a t e v e r t e x (

22 u in t 32 t co r e id ,

23 u in t 32 t degree ,

24 v e r t e x da t a t & vertex data ,

25 std : : vector<i n t 32 t> h i s t o r i e s ,

26 u in t 32 t h i s t o f f s e t)

27 {
28 cout << ”−−−−− va l i d a t e −−−−” << endl ;

29 cout << ” c o r e i d : ” << c o r e i d << endl ;

30 cout << ” co r e s : ” << ver t ex data . c o r e s << endl ;

31 cout << ” degree : ” << degree << endl ;

32 cout << ” exce s s : ” << ver t ex data . exc e s s << endl ;

33 cout << ” h i s t o f f s e t : ” << h i s t o f f s e t << endl ;

34 cout << ” h i s t o r i e s : \n” ;

35

36 u in t 32 t sum hist = 0 ;

37 for (s i z e t i = 0 ; i < ve r t ex data . c o r e s ; i++) {
38 cout << h i s t o r i e s [i] << endl ;

39 sum hist += h i s t o r i e s [h i s t o f f s e t + i] ;

40 }
41 cout << ” sum hist : ” << sum hist << endl ;

42

43 a s s e r t (ve r t ex data . c o r e s == degree − sum hist − ver t ex data . exc e s s) ;

44 }
45

46 template<class vertex>

47 std : : vector<u int32 t> KCore (graph<vertex> & G, bool pr intCores = fa l se)

48 {
49 std : : abort () ;

50 }
51

52 template<>

53 std : : vector<u int32 t> KCore<symmetricVertex>(graph<symmetricVertex> & G, bool

pr intCores)

54 {
55

56 // i n i t

57 s i z e t l a r g e s tCor e = 0 ;

58 s i z e t n = G. n ;

59 s i z e t m = G.m;

60

61 std : : vector<u int32 t> ver t (n , 0) ;

62 std : : vector<ve r t ex da ta t> ve r t ex data (n , {0 , 0 , static cast<u int32 t >(n) , 0}) ;
63

APPENDIX A. APPENDIX 55

64 for (s i z e t i = 0 ; i < n ; i++) {
65 ve r t ex data [i] . c o r e s = G.V[i] . getOutDegree () ;

66 }
67

68 std : : vector<i n t 32 t> h i s t o r i e s (m + 1 , 0) ;

69

70 u in t 32 t md = std : : max element (

71 ve r t ex data . begin () , ve r t ex data . end () ,

72 [] (const ve r t e x da t a t & a , const ve r t e x da t a t & b)

73 {return a . co r e s < b . co r e s ; })−>co r e s ;

74 std : : vector<u int32 t> bin (md + 2 , 0) ;

75

76 for (s i z e t v = 0 ; v < n ; v++) {
77 bin [ve r t ex data [v] . c o r e s + 1]++;

78 }
79

80 std : : pa r t i a l sum (bin . begin () , s td : : prev (bin . end ()) , bin . begin ()) ;

81

82 std : : vector<u int32 t> i n c r (md + 1 , 0) ;

83 for (s i z e t v = 0 ; v < n ; v++) {
84 ve r t ex data [v] . pos = bin [ve r t ex data [v] . c o r e s] + in c r [ve r t ex data [v] . c o r e s] ;

85 ve r t [ve r t ex data [v] . pos] = v ;

86 i n c r [ve r t ex data [v] . c o r e s]++;

87 }
88

89 auto a r r o f f s e t o f i n d e x = [&V = G.V,

90 ZeroDeg = G.V [0] . getOutNeighbors ()] (long v) −> u in t 32 t {
91 return V[v] . getOutNeighbors () − ZeroDeg ;

92 } ;
93

94 // beg in main loop

95 for (s i z e t i = 0 ; i < n ; i++) {
96 u in t 32 t v = ver t [i] ;

97

98 const u in t 32 t o l d a c t = ver t ex data [v] . a c t i v i t i e s ;

99 const u in t 32 t new act = ver t ex data [v] . c o r e s ;

100

101 i f (o l d a c t == new act) {
102 continue ;

103 }
104

105 ve r t ex data [v] . a c t i v i t i e s = new act ;

106

107 u in t 32 t ∗ const begin = &G.V[v] . getOutNeighbors () [0] ;

108 u in t 32 t ∗ const end = begin + G.V[v] . getOutDegree () ;

109 for (u i n t 32 t ∗ i t = begin ; i t != end ; i t++) {
110 const u in t 32 t u = ∗ i t ;

111

112 #i f d e f VALIDATE

113 std : : cout << ” i : ” << i << ” j : ” << j << ” u : ” << u << ” v : ” << v << std : :

endl ;

114 std : : cout << ”deg (v) : ” << G.V[v] . getOutDegree () << ” deg (u) : ” << G.V[u] .

getOutDegree () <<

115 std : : endl ;

116 std : : cout << ” o l d a c t : ” << o l d a c t << ” new act : ” << new act << std : : endl ;

APPENDIX A. APPENDIX 56

117

118 a s s e r t (new act < o l d a c t) ;

119 a s s e r t (o l d a c t > 0) ;

120 #end i f

121

122 const u in t 32 t h i s t o f f s e t = a r r o f f s e t o f i n d e x (u) ;

123

124 #i f d e f VALIDATE

125 int deg cumulat ive = u ;

126 for (int z = 0 ; z < u ; z++) {
127 deg cumulat ive += G.V[z] . getOutDegree () ;

128 }
129 a s s e r t (deg cumulat ive == h i s t o f f s e t) ;

130 #end i f

131

132 i f (new act >= G.V[u] . getOutDegree ()) {
133 continue ;

134 }
135

136 #i f n d e f VALIDATE

137 i f (o l d a c t < ver t ex data [u] . c o r e s) {
138 a s s e r t (h i s t o f f s e t + o l d a c t < m) ;

139 (h i s t o r i e s [h i s t o f f s e t + o l d a c t])−−;

140 }
141 #else

142 (h i s t o r i e s [h i s t o f f s e t + o l d a c t])−−;

143 #end i f

144

145 (h i s t o r i e s [h i s t o f f s e t + new act])++;

146

147 // v . a c t i v i t i e s >= u . cores && v . cores < u . cores

148 i f (o l d a c t >= ver tex data [u] . c o r e s && new act < ver t ex data [u] . c o r e s) {
149 // ve r t e x da t a [u] −= (ve r t e x da t a [u] > 0) ;

150 // ve r t e x da t a [u] . exce s s −= (ve r t e x da t a [u] . exce s s > 0) ;

151 i f (ve r t ex data [u] . ex c e s s > 0) { // ternary or sa tdec ?

152 ve r t ex data [u] . excess −−;

153 std : : abort () ; // shou ld never be reached in seq implementation

154 } else {
155 a s s e r t (ve r t ex data [u] . c o r e s >= 0) ;

156

157 // update pr io

158 u in t 32 t du = ver t ex data [u] . c o r e s ;

159 u in t 32 t pu = ver t ex data [u] . pos ;

160 u in t 32 t pw = bin [du] ; // bin o f v

161 u in t 32 t w = ver t [pw] ; // f i r s t elem in bin

162

163 i f (u != w) { // swap

164 ve r t ex data [u] . pos = pw;

165 ver t [pu] = w;

166 ve r t ex data [w] . pos = pu ;

167 ver t [pw] = u ;

168 }
169 bin [du]++;

170 ve r t ex data [u] . cores −−;

171 ve r t ex data [u] . ex c e s s = h i s t o r i e s [h i s t o f f s e t + ver t ex data [u] . c o r e s] ;

APPENDIX A. APPENDIX 57

172 #i f d e f VALIDATE

173 std : : cout << ”update ! c o r e s [” << u << ”] : ” << ver t ex data [u] . c o r e s << std

: : endl ;

174 #end i f

175 }
176 }
177

178 #i f d e f VALIDATE

179 va l i d a t e v e r t e x (

180 u ,

181 G.V[u] . getOutDegree () ,

182 ve r t ex data [u] ,

183 h i s t o r i e s ,

184 a r r o f f s e t o f i n d e x (u) + u) ;

185 #end i f

186 }
187 }
188

189 // end main loop

190 for (s i z e t i = 0 ; i < n ; i++) {
191 i f (ve r t ex data [i] . c o r e s > l a r g e s tCor e) {
192 l a rg e s tCor e = ver t ex data [i] . c o r e s ;

193 }
194 }
195 cout << ” l a rg e s tCor e was ” << l a r g e s tCor e << endl ;

196

197 std : : vector<u int32 t> co r e s ;

198

199 std : : t rans form (

200 ve r t ex data . begin () ,

201 ve r t ex data . end () ,

202 std : : b a c k i n s e r t e r (c o r e s) ,

203 std : : mem fn(&ve r t e x da t a t : : c o r e s)) ;

204

205 return co r e s ;

206 }
207

208 template<class vertex>

209 void Compute (graph<vertex> & GA, commandLine P)

210 {
211 bool pr intCores = P. getOptionValue (”−p”) ;

212 cout << ”### app l i c a t i o n : kcore−seq−bzq−ao f s ” << endl ;

213 cout << ”### graph : ” << P. getArgument (0) << endl ;

214 cout << ”### workers : ” << getWorkers () << endl ;

215 cout << ”### n : ” << GA. n << endl ;

216 cout << ”### m: ” << GA.m << endl ;

217 auto co r e s = KCore (GA, pr intCores) ;

218 i f (pr intCores) {
219 cout << ” co r e s : ” << endl ;

220 for (int i = 0 ; i < GA. n ; i++) {
221 cout << i << ” ” << co r e s [i] << endl ;

222 }
223 }
224 }

APPENDIX A. APPENDIX 58

A.3 MPKI for LLC Load and Stores

Figures A.1 and A.2 show load misses and store misses respectively. Misses are mea-

sured using Intel hardware performance counters and reported by using the linux tool

perf stat. We report MPKI as the number of misses per 1000 program instructions.

Figure A.1: MPKI: LLC Load Misses.

APPENDIX A. APPENDIX 59

Figure A.2: MPKI: LLC Store Misses.

Bibliography

[1] 9th dimacs implementation challenge: Shortest paths, 2009.

[2] Akhlaque Ahmad, Lyuheng Yuan, Da Yan, Guimu Guo, Jieyang Chen, and

Chengcui Zhang. Accelerating k-core decomposition by a gpu. In 2023 IEEE

39th International Conference on Data Engineering (ICDE), pages 1818–1831,

2023.

[3] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed

schedulers can efficiently parallelize iterative algorithms. In Proceedings of the

2018 ACM Symposium on Principles of Distributed Computing. ACM, July 2018.

[4] Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores decompo-

sition of networks. CoRR, cs.DS/0310049, 2003.

[5] Guy E Blelloch and Bruce M Maggs. Parallel algorithms. ACM Computing

Surveys (CSUR), 28(1):51–54, 1996.

[6] Davide Cellai, Aonghus Lawlor, Kenneth A. Dawson, and James P. Gleeson.

Tricritical point in heterogeneous k-core percolation. Physical Review Letters,

107(17), October 2011.

[7] Madelaine Daianu, Neda Jahanshad, Talia M Nir, Arthur W Toga, Clifford R

Jack, Jr, Michael W Weiner, Paul M Thompson, and Alzheimer’s Disease Neu-

roimaging Initiative. Breakdown of brain connectivity between normal aging

and alzheimer’s disease: a structural k-core network analysis. Brain Connect.,

3(4):407–422, 2013.

[8] Naga Shailaja Dasari, Ranjan Desh, and M. Zubair. Park: An efficient algorithm

for k-core decomposition on multicore processors. In 2014 IEEE International

Conference on Big Data (Big Data), pages 9–16, 2014.

60

BIBLIOGRAPHY 61

[9] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework for

parallel graph algorithms using work-efficient bucketing. In Proceedings of the

29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA

’17, page 293–304, New York, NY, USA, 2017. Association for Computing Ma-

chinery.

[10] Gal Elidan, Ian McGraw, and Daphne Koller. Residual belief propagation: In-

formed scheduling for asynchronous message passing. CoRR, abs/1206.6837,

2012.

[11] Santo Fortunato and Darko Hric. Community detection in networks: A user

guide. Physics Reports, 659:1–44, 2016. Community detection in networks: A

user guide.

[12] Linton C. Freeman. Centrality in social networks conceptual clarification. Social

Networks, 1(3):215–239, 1978.

[13] Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher J

Honey, Van J Wedeen, and Olaf Sporns. Mapping the structural core of human

cerebral cortex. PLoS Biol., 6(7):e159, July 2008.

[14] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali. Ordered

vs. unordered: a comparison of parallelism and work-efficiency in irregular al-

gorithms. In ACM SIGPLAN Symposium on Principles & Practice of Parallel

Programming, 2011.

[15] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel

Sanchez. A scalable architecture for ordered parallelism. In 2015 48th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

228–241, 2015.

[16] David S. Johnson. Approximation algorithms for combinatorial problems. Pro-

ceedings of the fifth annual ACM symposium on Theory of computing, 1973.

[17] Humayun Kabir and Kamesh Madduri. Parallel k-core decomposition on multi-

core platforms. In 2017 IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW), pages 1482–1491, 2017.

[18] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Much-

nik, H. Eugene Stanley, and Hernán A. Makse. Identification of influential spread-

ers in complex networks. Nature Physics, 6(11):888–893, Nov 2010.

BIBLIOGRAPHY 62

[19] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter,

a social network or a news media? In Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, page 591–600, New York, NY,

USA, 2010. Association for Computing Machinery.

[20] Nir Lahav, Baruch Ksherim, Eti Ben-Simon, Adi Maron-Katz, Reuven Cohen,

and Shlomo Havlin. K-shell decomposition reveals hierarchical cortical organi-

zation of the human brain. New Journal of Physics, 18(8):083013, aug 2016.

[21] Andrew Lenharth, Donald Nguyen, and Keshav Pingali. Priority queues are not

good concurrent priority schedulers. In Jesper Larsson Träff, Sascha Hunold,

and Francesco Versaci, editors, Euro-Par 2015: Parallel Processing - 21st Inter-

national Conference on Parallel and Distributed Computing, Vienna, Austria,

August 24-28, 2015, Proceedings, volume 9233 of Lecture Notes in Computer

Science, pages 209–221. Springer, 2015.

[22] David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and

graph coloring algorithms. J. ACM, 30(3):417–427, jul 1983.

[23] Amir Mehrafsa, Sean Chester, and Alex Thomo. Vectorising k-core decomposi-

tion for gpu acceleration. In Proceedings of the 32nd International Conference

on Scientific and Statistical Database Management, SSDBM ’20, New York, NY,

USA, 2020. Association for Computing Machinery.

[24] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. Distributed

k-core decomposition. CoRR, abs/1103.5320, 2011.

[25] Flaviano Morone, Kate Burleson-Lesser, H.A. Vinutha, Srikanth Sastry, and

Hernán A. Makse. The jamming transition is a k-core percolation transition.

Physica A: Statistical Mechanics and its Applications, 516:172–177, 2019.

[26] J.T. Oplinger, D.L. Heine, and M.S. Lam. In search of speculative thread-level

parallelism. In 1999 International Conference on Parallel Architectures and Com-

pilation Techniques (Cat. No.PR00425), pages 303–313, 1999.

[27] Alexander Outman. Web data commons - hyperlink graphs, 2017.

[28] Gilead Posluns, Yan Zhu, Guowei Zhang, and Mark C. Jeffrey. A scalable archi-

tecture for reprioritizing ordered parallelism. In Proceedings of the 49th Annual

International Symposium on Computer Architecture, ISCA ’22, page 437–453,

New York, NY, USA, 2022. Association for Computing Machinery.

BIBLIOGRAPHY 63

[29] Anastasiia Postnikova, Nikita Koval, Giorgi Nadiradze, and Dan Alistarh. Multi-

queues can be state-of-the-art priority schedulers, 2021.

[30] Lakshminarayanan Renganarayana, Vijayalakshmi Srinivasan, Ravi Nair, and

Daniel Prener. Programming with relaxed synchronization. In Proceedings of the

2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore

Scalability, RACES ’12, page 41–50, New York, NY, USA, 2012. Association for

Computing Machinery.

[31] Hamza Rihani, Peter Sanders, and Roman Dementiev. Multiqueues: Simple

relaxed concurrent priority queues. In Proceedings of the 27th ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA ’15, page 80–82, New

York, NY, USA, 2015. Association for Computing Machinery.

[32] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial

and Applied Mathematics, second edition, 2003.

[33] Stephen B. Seidman. Network structure and minimum degree. Social Networks,

5(3):269–287, 1983.

[34] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining

using k-core analysis — patterns, anomalies and algorithms. In 2016 IEEE 16th

International Conference on Data Mining (ICDM), pages 469–478, 2016.

[35] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing frame-

work for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’13, page 135–146,

New York, NY, USA, 2013. Association for Computing Machinery.

[36] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Ky-

rola, Harsha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement:

The problem based benchmark suite. In Proceedings of the twenty-fourth annual

ACM symposium on Parallelism in algorithms and architectures, pages 68–70,

2012.

[37] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The

anatomy of the facebook social graph, 2011.

[38] Marvin Williams, Peter Sanders, and Roman Dementiev. Engineering multi-

queues: Fast relaxed concurrent priority queues. CoRR, abs/2107.01350, 2021.

BIBLIOGRAPHY 64

[39] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib

Kamil, Saman Amarasinghe, and Julian Shun. Optimizing ordered graph algo-

rithms with graphit. In Proceedings of the 18th ACM/IEEE International Sym-

posium on Code Generation and Optimization, CGO 2020, page 158–170, New

York, NY, USA, 2020. Association for Computing Machinery.

	Introduction
	k-core Motivation
	Performance
	Contributions
	Thesis Organization

	Background
	k-core
	Peeling Algorithm

	Parallel k-core Algorithms
	Parallelization Approaches and Relaxation
	Speculation
	Bulk Synchrony
	Relaxation

	Concurrent Priority Schedulers

	PARKore
	The PARKore Algorithm
	Optimizations and Multithreading
	MultiQueues as Priority Schedulers

	Evaluation and Results
	Methodology
	Performance
	Cache Performance
	Priority Scheduler Overheads
	Sensitivity to MultiQueue Parameters

	Conclusion and Future Work
	Future Work

	Appendix
	PARKore Code
	Sequential BZ Implementation
	MPKI for LLC Load and Stores

